Skip to main content

Linear Problem Kernels for Planar Graph Problems with Small Distance Property

  • Conference paper
Book cover Mathematical Foundations of Computer Science 2011 (MFCS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6907))

Abstract

Recently, various linear problem kernels for NP-hard planar graph problems have been achieved, finally resulting in a meta-theorem for classification of problems admitting linear kernels. Almost all of these results are based on a so-called region decomposition technique. In this paper, we introduce a simple partition of the vertex set to analyze kernels for planar graph problems which admit the distance property with small constants. Without introducing new reduction rules, this vertex partition directly leads to improved kernel sizes for several problems. Moreover, we derive new kernelization algorithms for Connected Vertex Cover, Edge Dominating Set, and Maximum Triangle Packing problems, further improving the kernel size upper bounds for these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization. In: FOCS 2009, pp. 629–638. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  4. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and ids. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  6. Gu, Q., Imani, N.: Connectivity is not a limit for kernelization: Planar connected dominating set. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 26–37. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  8. Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Guo, J., Niedermeier, R., Wernicke, S.: Fixed-parameter tractability results for full-degree spanning tree and its dual. Networks 56(2), 116–130 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Lokshtanov, D., Mnich, M., Saurabh, S.: Linear kernel for planar connected dominating set. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 281–290. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Luo, W., Wang, J., Feng, Q., Guo, J., Chen, J.: An improved kernel for planar connected dominating set. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 70–81. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Moser, H.: A problem kernelization for graph packing. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 401–412. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching problem. Discrete Applied Mathematics 157(4), 715–727 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Prieto, E.: Systematic Kernelization in FPT Algorithm Design. Ph.D. thesis, Department of Computer Science, University of Newcastle, Australia (2005)

    Google Scholar 

  15. Privadarsini, P., Hemalatha, T.: Connected vertex cover in 2-connected planar graph with maximum degree 4 is NP-complete. International Journal of Mathematical, Physical and Engineering Sciences 2(1), 51–54 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Yang, Y., Guo, J., Chen, J. (2011). Linear Problem Kernels for Planar Graph Problems with Small Distance Property. In: Murlak, F., Sankowski, P. (eds) Mathematical Foundations of Computer Science 2011. MFCS 2011. Lecture Notes in Computer Science, vol 6907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22993-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22993-0_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22992-3

  • Online ISBN: 978-3-642-22993-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics