Skip to main content

Artificial MicroRNA and Its Applications

  • Chapter
  • First Online:
Regulatory RNAs

Abstract

Enhanced understanding of cellular microRNA (miRNA) biogenesis machinery has allowed researchers to engineer synthetic or artificial miRNAs (amiRNAs) that can be designed to direct efficient silencing of any transcript. The amiRNA technology has not only widened the existing gene silencing tool kit but also offers several distinct improvements over existing RNAi approaches, primarily based on siRNA generating hairpin RNA precursors. amiRNAs have already been applied to a wide range of agricultural and medical applications. This chapter discusses various aspects of miRNA processing, design principles of amiRNA expression vectors and their application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai T, Zhang L, Gao Z et al (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol (Stuttg) 13:304–316. doi:10.1111/j.1438-8677.2010.00374.x

    Article  CAS  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  PubMed  CAS  Google Scholar 

  • Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818

    Article  PubMed  CAS  Google Scholar 

  • Baeka MN, Junga KH, Haldera D, Choia MR, Leea B, Leeb B, Jungb MH, Choib I, Chungc M, Ohd D, Chaia YG (2010) Artificial microRNA-based neurokinin-1 receptor gene silencing reduces alcohol consumption in mice. Neurosci 475:124–128. doi:10.1016/j.neulet.2010.03.051

    Article  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bogerd HP, Karnowski HW, Cai X, Shin J, Pohlers M, Cullen BR (2010) A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral MicroRNAs. Mol Cell 37:135–142

    Article  PubMed  CAS  Google Scholar 

  • Bollman KM, Aukerman MJ, Park M, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504

    Article  PubMed  CAS  Google Scholar 

  • Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28(23):3646–3656. doi:10.1038/emboj.2009.292

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, Wolfe SA, Giralde AJ (2010) A novel microRNA processing pathway independent of Dicer requires AGO2 catalytic activity. Science 328:1694–1698

    Article  PubMed  CAS  Google Scholar 

  • Czech B, Zhou R, Erlich Y, Brennecke J, Binari R, Villatta C, Gordon A, Perrimon N, Hannon GJ (2009) Hierarchical rules for Argonate loading in Drosophila. Mol Cell 36:445–456

    Article  PubMed  CAS  Google Scholar 

  • Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 13:373–84

    Article  Google Scholar 

  • Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science 331:550–553. doi:10.1126/science.1191138

    Article  PubMed  CAS  Google Scholar 

  • Du J, Gao S, Luo J et al (2011) Effective inhibition of foot-and-mouth disease virus (FMDV) replication in vitro by vector-delivered microRNAs targeting the 3D gene. Virol J 8:292. doi:10.1186/1743-422X-8-292

    Article  PubMed  CAS  Google Scholar 

  • Duan C-G, Wang C-H, Fang R-X, Guo H-S (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11085

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for MicroRNA biogenesis in living Arabidopsis plants. Curr Biol 17:818–823

    Article  PubMed  CAS  Google Scholar 

  • Felippes FFD, Ott F, Weigel D (2011) Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana. Nucleic Acids Res 39(7):2880–2889. doi:10.1093/nar/gkq1240

    Article  PubMed  Google Scholar 

  • Gao Y, Yu L, Wei W, Li J, Luo Q, Shen J (2008) Inhibition of hepatitis B virus gene expression and replication by artificial microRNA. World J Gastroenterol 14:4684–4689

    Article  PubMed  CAS  Google Scholar 

  • Han N, Chu LS, Cao J et al. (2010) [Construction and application of an artificial microRNA expression vector for inhibiting PAR4] 26(11):1105–7

    Google Scholar 

  • Hu T, Fu Q, Chen P, Ma L, Sin O, Guo D (2009) Construction of an artificial MicroRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells. Int J Mol Sci 10(5):2158–68

    Article  PubMed  CAS  Google Scholar 

  • Hu T, Chen P, Fu Q, Liu Y, Ishaq M, Li J, Ma L, Guo D (2010) Comparative studies of various artificial microRNA expression vectors for RNAi in mammalian cells. Mol Biotechnol 46:34–40

    Article  PubMed  CAS  Google Scholar 

  • Huang V, Qin Y, Wang J, Wang X, Place RF, Lin G, Lue TF, Li L (2010) RNAa is conserved in mammalian cells. PLoS One 5:e8848

    Article  PubMed  Google Scholar 

  • Israsena N, Supavonwong P, Ratanasetyuth N, Khawplod P, Hemachudha T (2009) Inhibition of rabies virus replication by multiple artificial microRNAs. Antiviral Res 84:76–8

    Article  PubMed  CAS  Google Scholar 

  • Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684

    Article  PubMed  CAS  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  PubMed  CAS  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Sætrom P, Snøve O, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105:16230–16235. doi:10.1073/pnas.0808830105

    Article  PubMed  CAS  Google Scholar 

  • Liang Z, Wu H, Reddy S, Zhu A, Wang S, Blevins D, Yoon Y, Zhang Y, Shim H (2007) Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun 363:542–546

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zhang L, Sun J, Luo Y, Wang M, Fan Y, Wang L (2010) A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis. Mol Biol Rep 37:903–909

    Article  PubMed  CAS  Google Scholar 

  • Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364

    Article  PubMed  CAS  Google Scholar 

  • Mateos JL, Bologna NG, Chorostecki U, Palatnik JF (2009) Identification of MicroRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr Biol 20:49–54. doi:10.1016/j.cub.2009.10.072

    Article  PubMed  Google Scholar 

  • McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I, Gilmore BL, Burstein H, Peluso RW, Polisky B, Carter BJ, Davidson BL (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 105:5868–5873

    Article  PubMed  CAS  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Ono M, Scot MS, Yamada K, Avolio F, Barton GJ, Lamond AI (2011) Identification of human miRNA precursors that resemble box C/D snoRNA. Nucleic Acids Res 39:3879–3891

    Article  PubMed  CAS  Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690

    Article  PubMed  CAS  Google Scholar 

  • Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  PubMed  CAS  Google Scholar 

  • Rieder B, Neuhaus HE (2011) Identification of an Arabidopsis Plasma membrane—located ATP transporter important for anther development. Plant Cell Online. doi:10.1105/tpc.111.084574

    Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  • Shepherd DN, Martin DP, Thomson JA (2009) Transgenic strategies for developing crops resistant to geminiviruses. Plant Sci 176:1–11

    Article  CAS  Google Scholar 

  • Shi R, Yang C, Lu S, Sederoff R, Chiang VL (2010) Specific down-regulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta 232:1281–1288. doi:10.1007/s00425-010-1253-3

    Article  PubMed  CAS  Google Scholar 

  • Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB et al (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 7(5):e1001388. doi:10.1371/journal.pgen.1001388

    Article  PubMed  CAS  Google Scholar 

  • Song L, Michael J, Axtell FNV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20:37–41. doi:10.1016/j.cub.2009.10.076

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Sun J, Wang X, Du L, Liu P (2010a) Blocking neuropilin-2 enhances corneal allograft survival by selectively inhibiting lymphangiogenesis on vascularized beds. Mol Vis 16:2354–2361

    PubMed  CAS  Google Scholar 

  • Tang Y, Wang F, Zhao J, Xie K, Hong Y, Liu Y (2010b) Virus-Based MicroRNA expression for gene functional analysis in plants. Plant Physiol 153:632–641

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: MicroRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Wang E, HsiehLi H, Chiou Y et al (2010a) Progressive renal distortion by multiple cysts in transgenic mice expressing artificial microRNAs against Pkd1. J Pathol 222:238–248. doi:10.1002/path.2765

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Yang Y, Yu C, Zhou J, Cheng Y, Yan C, Chen J (2010b) A highly efficient method for construction of rice artificial MicroRNA vectors. Mol Biotechnol 3:211–218. doi:10.1007/s12033-010-9291-4

    Article  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829

    Article  PubMed  Google Scholar 

  • Werner S, Wollmann H, Schneeberger K, Weigel D (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr Biol 20:42–48. doi:10.1016/j.cub.2009.10.073

    Article  PubMed  CAS  Google Scholar 

  • Wheatley AK, Kramski M, Alexander MR, Toe JG, Center RJ, Purcell DFJ (2011) Co-expression of miRNA targeting the expression of PERK, but not PKR, enhances cellular immunity from an HIV-1 Env DNA vaccine. PLoS One 6(3):e18225

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Yuan Q, Yang Y, Wu J (2009) Enzymatic preparation of an artificial microRNA library. Biochem Biophys Res Commun 390:791–796

    Article  PubMed  CAS  Google Scholar 

  • Yadava P (2010) Designing artificial microRNAs as a combat strategy against a plant geminivirus. PhD thesis. ICGEB-Jawaharlal Nehru University

    Google Scholar 

  • Yadava P (2011) Artificial microRNA: a third generation RNAi technology. In: Gaur RK, Gafni Y, Sharma P, Gupta PK (eds) iRNA technology. Science Publishers, New Hampshire

    Google Scholar 

  • Yadava P, Mukherjee SK (2010) Engineering geminivirus resistance in tomatoes using artificial microRNAs. Keystone Symposium on RNA Silencing Mechanisms in Plants, Santa Fe, NM, USA, 21–26 Feb 2010

    Google Scholar 

  • Yadava P, Suyal G, Mukherjee SK (2010) Begomovirus DNA replication and pathogenecity. Curr Sci 98:360–369

    CAS  Google Scholar 

  • Yan H, Deng X, Cao Y et al (2011) A novel approach for the construction of plant amiRNA expression vectors. J Biotechnol 151:9–14. doi:10.1016/j.jbiotec.2010.10.078

    Article  PubMed  CAS  Google Scholar 

  • Yang JS, Maurine T, Robine N, Rasmussen KD, Jeffrey KL, Chanwani R, Papapetroud EP, Sadelain M, O’Carrol D, Lai EC (2010) Conserved vertebrate miR-451 provide a platform for Dicer-independent, AGO2 mediated microRNA biogenesis. Proc Natl Acad Sci USA 107:15163–15168

    Article  PubMed  CAS  Google Scholar 

  • Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, Chen KC, Lai EC (2011) Widespread regulatory activity of vertebrate microRNA* species. RNA 17:312–326

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Liu Z, Hemida MG, Yang D (2011) Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS One 6(6):e21215. doi:10.1371/journal.pone.0021215

    Article  PubMed  CAS  Google Scholar 

  • Yeoh CC, Balcerowicz M, Laurie R, Macknight R, Putterill J (2011) Developing a method for customized induction of flowering. BMC Biotechnol 11:36. doi:10.1186/1472-6750-11-36

    Article  PubMed  CAS  Google Scholar 

  • Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR (2005) Overexpression of Exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11:220–226

    Article  PubMed  CAS  Google Scholar 

  • Yoo SK, Hong SM, Lee JS, Ahn JH (2011) A genetic screen for leaf movement mutants identifies a potential role for AGAMOUS-LIKE 6 (AGL6) in circadian-clock control. Mol Cells 31:281–287. doi:10.1007/s10059-011-0035-5

    Article  PubMed  CAS  Google Scholar 

  • Younger ST, Corey DR (2011) Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. doi:10.1093/nar/gkr155

    Google Scholar 

  • Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Cai X, Cullen BR (2005) Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 392:371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PY is thankful to Council of Scientific and Industrial Research, India, for the Shyama Prasad Mukherjee Fellowship, the award of which enabled PY to develop the amiRNA transgenics, and also to the Management of Ankur Seeds Pvt Ltd. Some part of the research reported here was possible due to a grant awarded by DBT, Govt. of India, to SM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yadava, P., Mukherjee, S.K. (2012). Artificial MicroRNA and Its Applications. In: Mallick, B., Ghosh, Z. (eds) Regulatory RNAs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22517-8_20

Download citation

Publish with us

Policies and ethics