Skip to main content

Cathodoluminescence Microanalysis of the Defect Microstructures of Bulk and Nanoscale Ultrapure Silicon Dioxide Polymorphs for Device Applications

  • Chapter
Quartz: Deposits, Mineralogy and Analytics

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Cathodoluminescence (CL) techniques have been used to investigate the defect structures of a variety of bulk and nanoscale ultrapure synthetic silicon dioxide (SiO2) polymorphs. CL microanalysis in an electron microscope enables the detection of defect centers with high sensitivity and high spatial resolution. The defect microstructures of a variety of pure silicon dioxide polymorphs have been systematically analyzed using CL microanalysis techniques: The CL microanalysis of SiO2 polymorphs can be challenging as their defect structure may be modified by electron irradiation. Bulk synthetic crystal and amorphous SiO2, SiO2 surface layers (ranging between 50–900 nm thick) on silicon and in situ buried SiO2 in silicon (synthesized using oxygen ion implantation and high temperature annealing processes) have been investigated and their characteristic defects have been determined and compared. The CL emission from pure SiO2 polymorphs is generally related to local point defects in the tetrahedrally coordinated SiO2 host lattice. CL emissions associated with non bridging oxygen defects, oxygen deficient defects and the radiative recombination of the self trapped exciton are observed from bulk and thermal thin films of SiO2 polymorphs. CL emission associated with very low concentrations of substitutional Aluminium impurities is also observed from bulk specimens of Type I and II a-SiO2. In contrast, the CL emission from buried SiO2 in silicon is dominated by emission associated with Si–SiO2 interfaces and Si nanoparticles which form during synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanas’ev VV, Revesz AG, Hughes HL (1996a) Confinement phenomena in buried oxides of SIMOX structures as affected by processing. J Electrochem Soc 143:695–700

    Google Scholar 

  • Afanas’ev VV, Stesmans A (1999) Photoionization of silicon particles in SiO2. Phys Rev B Condens Matter 59:2025–2034

    Google Scholar 

  • Afanas’ev VV, Stesmans A, Revesz AG, Hughes HL (1997) Structural inhomogeneity and silicon enrichment of buried SiO2 layers formed by oxygen ion implantation in silicon. J Appl Phys 82:2184–2199

    Google Scholar 

  • Afanas’ev VV, Stesmans A, Twigg ME (1996b) Epitaxial growth of SiO2 produced in silicon by oxygen ion implantation. Phys Rev Lett 77:4206

    Google Scholar 

  • Alonso PJ, Halliburton LE, Kohnke EE, Bossol RB (1983) X-ray induced luminescence in crystalline SiO2. J Appl Phys 54:5369–5375

    Google Scholar 

  • Bhat R, Dutta PS, Guha S (2008) Crystal growth and below-bandgap optical absorption studies in InAs for non-linear optic applications. J Cryst Growth 310:1910–1916

    Google Scholar 

  • Billeb A, Grieshaber W, Stocker D, Schubert EF (1997) Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures. Appl Phys Lett 70:2790–2792

    Google Scholar 

  • Camassel J, Falkovsky LA, Planes N (2001) Strain effect in silicon-on-insulator materials: Investigation with optical phonons. Phys Rev B Condens Matter 63:1880

    Google Scholar 

  • Cazaux J (1986) Some considerations on the electric field induced in insulators by electron bombardment. J Appl Phys 59:1418–1430

    Google Scholar 

  • Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409

    Google Scholar 

  • Fauchet PM, Tsybeskov L, Zacharias M, Hirschman K (1998) Nanocrystalline silicon/amorphous silicon dioxide superlattices. Mater Res Soc Symp Proc 485:49–59

    Google Scholar 

  • Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev OI, van Tendeloo G, Moshchalkov VV (2008) Classification and control of the origin of photoluminescence from Si nanocrystals. Nat Nanotechnol 3:174–178

    Google Scholar 

  • Gorton NT, Walker G, Burley SD (1997) Experimental analysis of the composite blue cathodoluminescence emission in quartz. J Lumin 72:669–671

    Google Scholar 

  • Gotze J, Kempe U (2008) A comparison of optical microscope- and scanning electron microscope-based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences. Mineral Mag 72:909–924

    Google Scholar 

  • Gotze J, Plotze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodolumimescence (CL) of quartz—a review. Mineral Petrol 71:225–250

    Google Scholar 

  • Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energy Mater Sol Cells 92:1305–1310

    Google Scholar 

  • Griscom DL (1991) Optical properties and structure of defects in silica glass. J Ceram Soc Jpn 99:923–942

    Google Scholar 

  • Halliburton LE, Koumvakalis N, Markes ME, Martin JJ (1981) Radiation effects in crystalline SiO2: The role of aluminum. J Appl Phys 52:3565–3574

    Google Scholar 

  • Hench LL, Vasconcelos W (1990) Gel-silica science. Annu Rev Mat Sci 20:269–298

    Google Scholar 

  • Henderson B, Imbusch GF (1989) Optical spectroscopy of inorganic solids. Clarendon, Oxford

    Google Scholar 

  • Heraeus Quarzglas (1995) Hanau, Germany

    Google Scholar 

  • Hobbs LW, Clinard FW Jr, Zinkle SJ, Ewing RC (1994) Radiation effects in ceramics. J Nucl Mater 216:291–321

    Google Scholar 

  • Hobbs LW, Jesurum CE, Pulim V, Berger B (1998) Local topology of silica networks. Philos Mag A 78:679–712

    Google Scholar 

  • Hobbs LW, Pascucci MR (1980) Radiolysis and defect structure in electron-irradiated a-quartz. Journal de Physique 7:C6-237–C6-242

    Google Scholar 

  • IBIS Technology Corporation (2000) Danvers, USA

    Google Scholar 

  • Ismail-Beigi S, Louie SG (2005) Self-trapped excitons in silicon dioxide: mechanism and properties. Phys Rev Lett 95:156401-4

    Google Scholar 

  • Itoh N, Shimizu-Iwayama T, Fujita T (1994) Excitons in crystalline and amorphous SiO2 :formation, relaxation and conversion to Frenkel pairs. J Non-Cryst Sol 179:194

    Google Scholar 

  • MTI Corporation (2010) Richmond, CA 94804, USA

    Google Scholar 

  • Nishikawa H, Nakamura R, Tohmon R, Ohki Y, Sakurai Y, Nagasawa K, Hama Y (1990) Generation mechanism of photoinduced paramagnetic centers from preexisting precursors in high-purity silicas. Phys Rev B Condens Matt 41:7828

    Google Scholar 

  • Nishikawa H, Stahlbush RE, Stathis JH (1999) Oxygen-deficient centers and excess Si in buried oxide using photoluminescence spectroscopy. Phys Rev B Condens Matt 60:15910–15918

    Google Scholar 

  • Nishikawa H, Watanabe E, Ito D, Ohki Y (1994) Decay kinetics of the 4.4 eV photoluminescence associated with the 2 states of oxygen-deficient-type defect in SiO2. Phys Rev Lett 72:2101

    Google Scholar 

  • Pacchioni G, Ierano G (1997) Computed optical absorption and photoluminescence spectra of neutral oxygen vacancies in alpha -quartz. Phys Rev Lett 79:753–756

    Google Scholar 

  • Pacchioni G, Ierano G (1998) Ab Initio theory of optical transitions of point defects in SiO2. Phys Rev B Condens Matt 57:818–832

    Google Scholar 

  • Pagel M, Barbin V, Blanc P, Ohnenstetter D (2000) Cathodoluminescence in geosciences. Springer Verlag, Berlin Heidelberg. ISBN 3-540-659870-0

    Google Scholar 

  • Paillet P, Autran JL, Leray JL, Aspar B, Auberton-Herve AJ (1995) Trapping-detrapping properties of irradiated ultra-thin SIMOX buried oxides. IEEE Trans Nucl Sci 42:2108–2113

    Google Scholar 

  • Palma A, Lopez-Villanueva JA, Carceller JE (1996) Electric field dependence of the electron capture cross section of neutral traps in SiO2. J Electrochem Soc 143:2687–2690

    Google Scholar 

  • Pauc N, Calvo V, Eymery J, Fournel F, Magnea N (2005) Electronic and optical properties of Si/Si O2 nanostructures. I. Electron-hole collective processes in single Si/Si O2 quantum wells. Phys Rev B Condens Matt 72:205324

    Google Scholar 

  • Pfeffer RL (1985) Damage center formation in SiO2 thin films by fast electron irradiation. J Appl Phys 57:5176–5180

    Google Scholar 

  • Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of alpha-quartz. Am Mineral 75:791–800

    Google Scholar 

  • Reed GT (ed) (2008) Silicon photonics: the state of the art. Wiley, Chichester

    Google Scholar 

  • Revesz AG, Hughes HL (1997) Properties of the buried oxide layer in SIMOX structures. Microelectron Eng 36:343–350

    Google Scholar 

  • Rusk BG, Reed MH, Dilles JH, Kent AJR (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. Am Mineral 91:1300–1312

    Google Scholar 

  • Saeta PN, Gallagher AC (1997) Photoluminescence properties of silicon quantum-well layers. Phys Rev B Condens Matt 55:4563

    Google Scholar 

  • Saint-Gobain Quartz Ltd (1997) Wallsend, UK

    Google Scholar 

  • Sawyer Research Products Inc (1994) Eastlake, USA

    Google Scholar 

  • Skuja L (1994) Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glass. J Non-Cryst Solids 167:229–238

    Google Scholar 

  • Skuja L (1998) The nature of optically active oxygen deficiency related centers in amorphous silicon dioxide. J Non-Cryst Solids 239:16–48

    Google Scholar 

  • Skuja L (2000) Optical properties of defects in Silica. In: Pacchioni G, Skuja L, Griscom DL (eds) Defects in SiO2 and related dielectrics: science and technology. Kluwer, Dordrecht

    Google Scholar 

  • Skuja L, Suzuki T, Tanimura K (1995) Site-selective laser-spectroscopy studies of the intrinsic 1.9-eV luminescence center in glassy SiO2. Phys Rev B 52:15208–15216

    Google Scholar 

  • Skuja LN, Streletsky AN, Pakovich AB (1984) A new intrinsic defect in amorphous SiO2 twofold coordinated silicon. Solid-State Commun 50:1069

    Google Scholar 

  • Song KS, Williams RT (1992) Self-trapped excitons. Springer, Berlin

    Google Scholar 

  • Stevens-Kalceff MA (2011) Cathodoluminescence microcharacterization of the radiation-sensitive defect microstructure of in situ buried oxide in silicon. J Phys D Appl Phys 44:255–402

    Google Scholar 

  • Stevens-Kalceff MA (1998) Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide. Phys Rev B. Condens Matt 57:5674–5683

    Google Scholar 

  • Stevens-Kalceff MA (2000) Electron irradiation induced radiolytic oxygen generation and micro-segregation in silicon dioxide polymorphs. Phys Rev Lett 84:3137–3140

    Google Scholar 

  • Stevens-Kalceff MA (2001) Micromodification of silicon dioxide in a variable pressure/environmental scanning electron microscope. Appl Phys Lett 79:3050–3052

    Google Scholar 

  • Stevens-Kalceff MA (2009) Cathodoluminescence microcharacterization of point defects in a-Quartz. Mineral Mag 73:521–541

    Google Scholar 

  • Stevens-Kalceff MA, Philips MR, Moon AR (1996) Electron irradiation induced changes in the surface topography of silicon dioxide. J Appl Phys 80:4308

    Google Scholar 

  • Stevens-Kalceff MA, Phillips M (1995a) Cathodoluminescence microcharacterization of the defect structure of quartz. Phys Rev B Condens Matt 52:3122–3134

    Google Scholar 

  • Stevens-Kalceff MA, Phillips M (1995b) Electron irradiation induced outgrowths from quartz. J Appl Phys 77:4125–4127

    Google Scholar 

  • Trukhin AN, Jansons JL, Dyuzheva TI, Lityagina LM, Bendeliani NA (2003) Luminescence of different modifications of crystalline silicon dioxide: Stishovite and coesite. Solid State Commun 127:415–418

    Google Scholar 

  • Tsai TE, Griscom DL (1991) Experimental evidence for excitonic mechanism of defect generation in high-purity silica. Phys Rev Lett 67:2517–2520

    Google Scholar 

  • Vasiliev I, Chelikowsky JR, Martin RM (2002) Surface oxidation effects on the optical properties of silicon nanocrystals - art. no. 121302. Phys Rev B Condens Matt 6512:1302

    Google Scholar 

  • Warren WL, Shaneyfelt MR, Schwank JR, Fleetwood DM, Winokur PS, Devine RAB, Maszara WP, McKitterick JB (1993) Paramagnetic defect centers in BESOI and SIMOX buried oxides. IEEE Trans on Nucl Sci 40:1755–1764

    Google Scholar 

  • Williams RT, Song KS (1990) The self-trapped exciton. J Phys Chem Solids 51:679

    Google Scholar 

  • Williams RT, Song KS, Faust WL, Leung CH (1986) Off-center self-trapped excitons and creation of lattice defects in alkali halide crystals. Phys Rev B Condens Matt 33:7232–7240

    Google Scholar 

  • Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82:197

    Google Scholar 

  • Wright AC (2000) Defect-free vitreous networks The idealised structure of SiO2 and related glasses. In: Pacchioni G, Skuja L, Griscom DL (eds) Defects in SiO2 and related dielectrics: science and technology. Kluwer, Dordrecht

    Google Scholar 

Download references

Acknowledgments

Support from the Australian Research Council and the Australian Microscopy and Microanalysis Research Facility in the Electron Microscope Unit at the University of New South Wales is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion A. Stevens-Kalceff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stevens-Kalceff, M.A. (2012). Cathodoluminescence Microanalysis of the Defect Microstructures of Bulk and Nanoscale Ultrapure Silicon Dioxide Polymorphs for Device Applications. In: Götze, J., Möckel, R. (eds) Quartz: Deposits, Mineralogy and Analytics. Springer Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22161-3_11

Download citation

Publish with us

Policies and ethics