Skip to main content

Dynamical Mean-Field Theory

  • Chapter
  • First Online:

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 171))

Abstract

The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The coordination number Z is determined by the dimension d and the lattice structure. Already in d = 3 the coordination number can be quite large, e.g., Z = 6 for a simple cubic lattice, Z = 8 for a bcc-lattice and Z = 12 for an fcc-lattice, making its inverse, 1 ∕ Z, rather small. It is then natural to consider the limit Z →  to simplify the problem. For a hypercubic lattice, obtained by generalizing the simple cubic lattice in d = 3 to arbitrary dimensions, one has Z = 2d. The limit d →  is then equivalent to Z → . Several standard approximation schemes which are commonly used to explain experimental results in dimension d = 3 are exact only in d, Z =  [9].

  2. 2.

    In the following we set the Planck constant \(\hslash \), the Boltzmann constant k B, and the lattice constant a equal to unity.

  3. 3.

    Here a “path” is any sequence of lines in a diagram; they are “separate” when they have no lines in common.

  4. 4.

    In d =  limit the notion of a Fermi surface of a lattice system is complicated by the fact that the dispersion ε k is not a simple smooth function.

  5. 5.

    The CPA is the best single-site approximation for disordered, non-interacting lattice electrons [272829]; it becomes exact in the limit d, Z →  [308].

  6. 6.

    We note that the sign of the hopping amplitude t ij used here (see the definition in 7.1b) is opposite to that in [33].

  7. 7.

    In principle, any one of the local functions \({\mathcal{G}}_{\sigma }(i{\omega }_{n})\), \({\Sigma }_{\sigma }(i{\omega }_{n})\), or \({\Delta }_{\sigma }(i{\omega }_{n})\) can be viewed as a “dynamical mean field” acting on particles on a site, since they all appear in the bilinear term of the local action (7.32).

  8. 8.

    In the following we only consider the paramagnetic phase, whereas magnetic order is assumed to be suppressed (“frustrated”).

  9. 9.

    Here we assume for simplicity that the metal remains a Fermi liquid and the insulator stays paramagnetic down to the lowest temperatures.

  10. 10.

    We note that \(\hat{{H}}_{\mathrm{LDA}}^{0}\) may include additional non-interacting orbitals.

References

  1. J.H. de Boer, E.J.W. Verwey, Proc. Phys. Soc. 49, 59 (1937)

    ADS  Google Scholar 

  2. N.F. Mott, R. Peierls, Proc. Phys. Soc. A 49, 72 (1937)

    ADS  Google Scholar 

  3. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    ADS  Google Scholar 

  4. M.C. Gutzwiller, Phys. Rev. Lett. 10, 59 (1963)

    ADS  Google Scholar 

  5. J. Hubbard, Proc. Roy. Soc. Lond. A276, 238 (1963)

    ADS  Google Scholar 

  6. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)

    ADS  MATH  Google Scholar 

  7. E. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)

    ADS  Google Scholar 

  8. D. Vollhardt, in Lectures on the Physics of Strongly Correlated Systems XIV, ed. by A. Avella, F. Mancini. AIP Conference Proceedings, vol. 1297 (American Institute of Physics, Melville, 2010), p. 339

    Google Scholar 

  9. D. Vollhardt, in Correlated Electron Systems, ed. by V.J. Emery (World Scientific, Singapore, 1993), p. 57

    Google Scholar 

  10. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982)

    MATH  Google Scholar 

  11. C. Itzykson, J.M. Drouffe, Statistical Field Theory (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  12. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

    ADS  Google Scholar 

  13. U. Wolff, Nucl. Phys. B 225, 391 (1983)

    ADS  Google Scholar 

  14. E. Müller-Hartmann, Z. Phys. B 74, 507 (1989)

    ADS  Google Scholar 

  15. W. Metzner, Z. Phys. B 77, 253 (1989)

    ADS  Google Scholar 

  16. E. Müller-Hartmann, Z. Phys. B 76, 211 (1989)

    ADS  Google Scholar 

  17. H. Schweitzer, G. Czycholl, Solid State Comm. 69, 171 (1989)

    ADS  Google Scholar 

  18. H. Schweitzer, G. Czycholl, Z. Phys. B 83, 93 (1991)

    ADS  Google Scholar 

  19. U. Brandt, C. Mielsch, Z. Phys. B 75, 365 (1989)

    ADS  Google Scholar 

  20. P.G.J. van Dongen, F. Gebhard, D. Vollhardt, Z. Phys. 76, 199 (1989)

    Google Scholar 

  21. F. Kajzar, J. Friedel, J. Phys. (Paris) 39, 397 (1978)

    Google Scholar 

  22. G. Treglia, F. Ducastelle, D. Spanjaard, Phys. Rev. B 22, 6472 (1980)

    ADS  Google Scholar 

  23. G. Bulk, R.J. Jelitto, Phys. Rev. B 41, 413 (1990)

    ADS  Google Scholar 

  24. J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960)

    MathSciNet  ADS  MATH  Google Scholar 

  25. V. Janiš, Z. Phys. B 83, 227 (1991)

    ADS  Google Scholar 

  26. V. Janiš, D. Vollhardt, Int. J. Mod. Phys. B 6, 731 (1992)

    ADS  Google Scholar 

  27. B. Velický, S. Kirkpatrick, H. Ehrenreich, Phys. Rev. 175, 745 (1968)

    ADS  Google Scholar 

  28. F. Yonezawa, K. Morigaki, Suppl. Prog. Theor. Phys. 53, 1 (1973)

    ADS  Google Scholar 

  29. R.J. Elliot, J.A. Krumhansl, P.L. Leath, Rev. Mod. Phys. 46, 465 (1974)

    ADS  Google Scholar 

  30. R. Vlaming, D. Vollhardt, Phys. Rev. B 45, 4637 (1992)

    ADS  Google Scholar 

  31. A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992)

    ADS  Google Scholar 

  32. M. Jarrell, Phys. Rev. Lett. 69, 168 (1992)

    ADS  Google Scholar 

  33. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    MathSciNet  ADS  Google Scholar 

  34. M. Fabrizio, in Lectures on the Physics of Highly Correlated Electron Systems XI, ed. by A. Avella, F. Mancini. AIP Conference Proceedings, vol. 918 (American Institute of Physics, Melville, 2007), p. 3

    Google Scholar 

  35. J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986)

    ADS  Google Scholar 

  36. J.K. Freericks, V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003)

    ADS  Google Scholar 

  37. R. Bulla, Phys. Rev. Lett. 83, 136 (1999)

    ADS  Google Scholar 

  38. R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    ADS  Google Scholar 

  39. M. Karski, C. Raas, G.S. Uhrig, Phys. Rev. B 77, 075116 (2008)

    ADS  Google Scholar 

  40. M. Caffarel, W. Krauth, Phys. Rev. Lett. 72, 1545 (1994)

    ADS  Google Scholar 

  41. Q. Si, M.J. Rozenberg, G. Kotliar, A.E. Ruckenstein, Phys. Rev. Lett. 72, 2761 (1994)

    ADS  Google Scholar 

  42. M.J. Rozenberg, G. Moeller, G. Kotliar, Mod. Phys. Lett. B 8, 535 (1994)

    ADS  Google Scholar 

  43. M.J. Rozenberg, X.Y. Zhang, G. Kotliar, Phys. Rev. Lett. 69, 1236 (1992)

    ADS  Google Scholar 

  44. A. Georges, W. Krauth, Phys. Rev. Lett. 69, 1240 (1992)

    ADS  Google Scholar 

  45. A.N. Rubtsov, V.V. Savkin, A.I. Lichtenstein, Phys. Rev. B 72, 035122 (2005)

    ADS  Google Scholar 

  46. P. Werner, A. Comanac, L. de’ Medici, M. Troyer, A.J. Millis, Phys. Rev. Lett. 97, 076405 (2006)

    Google Scholar 

  47. K. Haule, Phys. Rev. B 75, 155113 (2007)

    ADS  Google Scholar 

  48. X.Y. Zhang, M.J. Rozenberg, G. Kotliar, Phys. Rev. Lett. 70, 1666 (1993)

    ADS  Google Scholar 

  49. K. Held, I.A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A.K. McMahan, R.T. Scalettar, T. Pruschke, V.I. Anisimov, D. Vollhardt, Psi-k Newsletter 56, 65 (2003); Reprinted in Phys. Status Solidi B 243, 2599 (2006)

    ADS  Google Scholar 

  50. N.E. Bickers, D.J. Scalapino, Ann. Phys. (NY) 193, 206 (1989)

    ADS  Google Scholar 

  51. A.I. Lichtenstein, M.I. Katsnelson, J. Phys. Condens. Matter 11, 1037 (1999)

    ADS  Google Scholar 

  52. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    ADS  Google Scholar 

  53. V. Drchal, V. Janiš, J. Kudrnovský, V.S. Oudovenko, X. Dai, K. Haule, G. Kotliar, J. Phys. Condens. Matter 17, 61 (2005)

    ADS  Google Scholar 

  54. D.E. Logan, M.T. Glossop, J. Phys. Condens. Matter 12, 985 (2000)

    ADS  Google Scholar 

  55. A. Kauch, K. Byczuk, ArXiv:0912.4278 (2009)

    Google Scholar 

  56. V. Janiš, P. Augustinský, Phys. Rev. B 75, 165108 (2007)

    ADS  Google Scholar 

  57. T. Pruschke, M. Jarrell, J.K. Freericks, Adv. Phys. 44, 187 (1995)

    ADS  Google Scholar 

  58. A. Georges, in Lectures on the Physics of Highly Correlated Electron Systems VIII, ed. by A. Avella, F. Mancini. AIP Conference Proceedings, vol. 715 (American Institute of Physics, Melville, 2004), p. 3

    Google Scholar 

  59. G. Kotliar, D. Vollhardt, Phys. Today 57(3), 53 (2004)

    Google Scholar 

  60. N.F. Mott, Rev. Mod. Phys. 40, 677 (1968)

    ADS  Google Scholar 

  61. N.F. Mott, Metal-Insulator Transitions, 2nd edn. (Taylor and Francis, London, 1990)

    Google Scholar 

  62. F. Gebhard, The Mott Metal-Insulator Transition (Springer, Berlin, 1997)

    Google Scholar 

  63. D.B. McWhan, J.P. Remeika, Phys. Rev. B 2, 3734 (1970)

    ADS  Google Scholar 

  64. D.B. McWhan, A. Menth, J.P. Remeika, W.F. Brinkman, T.M. Rice, Phys. Rev. B 7, 1920 (1973)

    ADS  Google Scholar 

  65. T.M. Rice, D.B. McWhan, IBM J. Res. Develop. 14, 251 (1970)

    Google Scholar 

  66. J. Hubbard, Proc. Roy. Soc. Lond. A281, 401 (1964)

    ADS  Google Scholar 

  67. W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)

    ADS  Google Scholar 

  68. K. Byczuk, M. Kollar, K. Held, Y.F. Yang, I.A. Nekrasov, T. Pruschke, D. Vollhardt, Nat. Phys. 3, 168 (2007)

    Google Scholar 

  69. A. Toschi, M. Capone, C. Castellani, K. Held, Phys. Rev. Lett. 102, 076402 (2009)

    ADS  Google Scholar 

  70. C. Raas, P. Grete, G.S. Uhrig, Phys. Rev. Lett. 102, 076406 (2009)

    ADS  Google Scholar 

  71. A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, Z.X. Shen, Nature 412, 510 (2001)

    ADS  Google Scholar 

  72. Z.X. Shen, A. Lanzara, S. Ishihara, N. Nagaosa, Philos. Mag. B 82, 1349 (2002)

    ADS  Google Scholar 

  73. H. He, Y. Sidis, P. Bourges, G.D. Gu, A. Ivanov, N. Koshizuka, B. Liang, C.T. Lin, L.P. Regnault, E. Schoenherr, B. Keimer, Phys. Rev. Lett. 86, 1610 (2001)

    ADS  Google Scholar 

  74. J. Hwang, T. Timusk, G.D. Gu, Nature 427, 714 (2004)

    ADS  Google Scholar 

  75. A. Hofmann, X.Y. Cui, J. Schäfer, S. Meyer, P. Höpfner, C. Blumenstein, M. Paul, L. Patthey, E. Rotenberg, J. Bünemann, F. Gebhard, T. Ohm, W. Weber, R. Claessen, Phys. Rev. Lett. 102, 187204 (2009)

    ADS  Google Scholar 

  76. R. Bulla, T.A. Costi, D. Vollhardt, Phys. Rev. B 64, 045103 (2001)

    ADS  Google Scholar 

  77. S.K. Mo, H.D. Kim, J.W. Allen, G.H. Gweon, J.D. Denlinger, J.H. Park, A. Sekiyama, A. Yamasaki, S. Suga, P. Metcalf, K. Held, Phys. Rev. Lett. 93, 076404 (2004)

    ADS  Google Scholar 

  78. M.J. Rozenberg, R. Chitra, G. Kotliar, Phys. Rev. Lett. 83, 3498 (1999)

    ADS  Google Scholar 

  79. J. Joo, V. Oudovenko, Phys. Rev. B 64, 193102 (2001)

    ADS  Google Scholar 

  80. N. Blümer, Metal-Insulator Transition and Optical Conductivity in High Dimensions (Shaker, Aachen, 2003)

    Google Scholar 

  81. T. Pruschke, Prog. Theor. Phys. Suppl. 160, 274 (2005)

    ADS  Google Scholar 

  82. D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990)

    Google Scholar 

  83. H. Park, K. Haule, G. Kotliar, Phys. Rev. Lett. 101, 186403 (2008)

    ADS  Google Scholar 

  84. P. Hohenberg, W. Kohn, Phys. Rev. 136B, 864 (1964)

    MathSciNet  ADS  Google Scholar 

  85. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    MathSciNet  ADS  Google Scholar 

  86. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

    ADS  Google Scholar 

  87. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

    ADS  Google Scholar 

  88. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Cond. Matter 9, 767 (1997)

    ADS  Google Scholar 

  89. V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, G. Kotliar, J. Phys.: Cond. Matt. 9, 7359 (1997)

    Google Scholar 

  90. A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

    ADS  Google Scholar 

  91. I.A. Nekrasov, K. Held, N. Blümer, A.I. Poteryaev, V.I. Anisimov, D. Vollhardt, Eur. Phys. J. B 18, 55 (2000)

    ADS  Google Scholar 

  92. K. Held, I.A. Nekrasov, N. Blümer, V.I. Anisimov, D. Vollhardt, Int. J. Mod. Phys. B 15, 2611 (2001)

    ADS  Google Scholar 

  93. K. Held, I.A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A.K. McMahan, R. Scalettar, T. Pruschke, V. Anisimov, D. Vollhardt, in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, ed. by J. Grotendorst, D. Marks, A. Muramatsu. NIC Series Volume, vol. 10, (NIC Directors, Forschungszentrum Jülich, Berlin, 2002), p. 175

    Google Scholar 

  94. A.I. Lichtenstein, M.I. Katsnelson, G. Kotliar, in Electron Correlations and Materials Properties, ed. by A. Gonis, N. Kioussis, M. Ciftan (Kluwer, New York, 2002), p. 428

    Google Scholar 

  95. K. Held, Adv. Phys. 56, 829 (2007)

    ADS  Google Scholar 

  96. M.I. Katsnelson, V.Y. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Rev. Mod. Phys. 80, 315 (2008)

    ADS  Google Scholar 

  97. V. Anisimov, Y. Izyumov, Electronic Structure of Correlated Materials, Springer Series in Solid-State Sciences, vol. 163 (Springer, Berlin, 2010)

    Google Scholar 

  98. J. Kuneš, I. Leonov, M. Kollar, K. Byczuk, V.I. Anisimov, D. Vollhardt, Eur. Phys. J. Special Topics 180, 5 (2010)

    ADS  Google Scholar 

  99. M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996)

    MathSciNet  ADS  Google Scholar 

  100. M. Potthoff, Adv. Solid State Phys. 45, 135 (2005)

    Google Scholar 

  101. T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    ADS  Google Scholar 

  102. K. Held, A.A. Katanin, A. Toschi, Prog. Theor. Phys. Suppl. 176, 117 (2008)

    Google Scholar 

  103. A. Fujimori, I. Hase, H. Namatame, Y. Fujishima, Y. Tokura, H. Eisaki, S. Uchida, K. Takegahara, F.M.F. de Groot, Phys. Rev. Lett. 69, 1796 (1992)

    ADS  Google Scholar 

  104. A. Sekiyama, H. Fujiwara, S. Imada, S. Suga, H. Eisaki, S.I. Uchida, K. Takegahara, H. Harima, Y. Saitoh, I.A. Nekrasov, G. Keller, D.E. Kondakov, A.V. Kozhevnikov, T. Pruschke, K. Held, D. Vollhardt, V.I. Anisimov, Phys. Rev. Lett. 93, 156402 (2004)

    ADS  Google Scholar 

  105. I.A. Nekrasov, G. Keller, D.E. Kondakov, A.V. Kozhevnikov, T. Pruschke, K. Held, D. Vollhardt, V.I. Anisimov, Phys. Rev. B 72, 155106 (2005)

    ADS  Google Scholar 

  106. E. Pavarini, S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, O.K. Andersen, Phys. Rev. Lett. 92, 176403 (2004)

    ADS  Google Scholar 

  107. I.H. Inoue, I. Hase, Y. Aiura, A. Fujimori, K. Morikawa, T. Mizokawa, Y. Haruyama, T. Maruyama, Y. Nishihara, Physica C 235–240, 1007 (1994)

    Google Scholar 

  108. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    ADS  Google Scholar 

  109. N.F. Mott, Proc. Phys. Soc. Lond., Sect. A 62, 415 (1949)

    Google Scholar 

  110. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    ADS  Google Scholar 

  111. V. Janiš, D. Vollhardt, Phys. Rev. B 46, 15712 (1992)

    ADS  Google Scholar 

  112. V. Janiš, M. Ulmke, D. Vollhardt, Europhys. Lett. 24, 287 (1993)

    ADS  Google Scholar 

  113. M. Ulmke, V. Janiš, D. Vollhardt, Phys. Rev. B 51, 10411 (1995)

    ADS  Google Scholar 

  114. V. Dobrosavljević, G. Kotliar, Phys. Rev. B 50, 1430 (1994)

    ADS  Google Scholar 

  115. M.C.O. Aguiar, V. Dobrosavljević, E. Abrahams, G. Kotliar, Phys. Rev. B 73, 115117 (2006)

    ADS  Google Scholar 

  116. M. Potthoff, M. Balzer, Phys. Rev. B 75, 125112 (2007)

    ADS  Google Scholar 

  117. V. Janiš, D. Vollhardt, Phys. Rev. B 46, 15712 (1992)

    ADS  Google Scholar 

  118. V. Dobrosavljević, G. Kotliar, Phys. Rev. Lett. 78, 3943 (1997)

    ADS  Google Scholar 

  119. V. Dobrosavljević, A.A. Pastor, B.K. Nikolić, Europhys. Lett. 62, 76 (2003)

    ADS  Google Scholar 

  120. F.X. Bronold, A. Alvermann, H. Fehske, Phil. Mag. 84, 637 (2004)

    Google Scholar 

  121. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005)

    ADS  Google Scholar 

  122. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. Lett. 102, 146403 (2009)

    ADS  Google Scholar 

  123. K. Byczuk, M. Ulmke, D. Vollhardt, Phys. Rev. Lett. 90, 196403 (2003)

    ADS  Google Scholar 

  124. K. Byczuk, M. Ulmke, Eur. Phys. J. B 45, 449 (2005)

    ADS  Google Scholar 

  125. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. B 69, 045112 (2004)

    ADS  Google Scholar 

  126. P. Lombardo, R. Hayn, G.I. Japaridze, Phys. Rev. B 74, 085116 (2006)

    ADS  Google Scholar 

  127. M. Potthoff, M. Balzer, Phys. Rev. B 75, 125112 (2007)

    ADS  Google Scholar 

  128. U. Yu, K. Byczuk, D. Vollhardt, Phys. Rev. Lett. 100, 246401 (2008)

    ADS  Google Scholar 

  129. R.J. Anglin, W. Ketterle, Nature 416, 211 (2002)

    ADS  Google Scholar 

  130. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)

    ADS  Google Scholar 

  131. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, U. Sen, Adv. Phys. 56, 243 (2007)

    ADS  Google Scholar 

  132. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    ADS  Google Scholar 

  133. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    ADS  Google Scholar 

  134. A. Isacsson, M.C. Cha, K. Sengupta, S.M. Girvin, Phys. Rev. B 72, 184507 (2005)

    ADS  Google Scholar 

  135. S.D. Huber, E. Altman, H.P. Büchler, G. Blatter, Phys. Rev. B 75, 085106 (2007)

    ADS  Google Scholar 

  136. A. Micheli, G.K. Brennen, P. Zoller, Nature 2, 341 (2006)

    Google Scholar 

  137. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

    ADS  Google Scholar 

  138. K. Byczuk, D. Vollhardt, Phys. Rev. B 77, 235106 (2008)

    ADS  Google Scholar 

  139. A. Hubener, M. Snoek, W. Hofstetter, Phys. Rev. B 80, 245109 (2009)

    ADS  Google Scholar 

  140. W.J. Hu, N.H. Tong, Phys. Rev. B 80, 245110 (2009)

    MathSciNet  ADS  Google Scholar 

  141. P. Anders, E. Gull, L. Pollet, M. Troyer, P. Werner, Phys. Rev. Lett. 105, 096402 (2010)

    ADS  Google Scholar 

  142. K. Byczuk, D. Vollhardt, Ann. Phys. (Berlin) 18, 622 (2009)

    MathSciNet  MATH  Google Scholar 

  143. J. Dziarmaga, Adv. Phys. 59, 1063 (2010)

    ADS  Google Scholar 

  144. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011)

    ADS  Google Scholar 

  145. L. Perfetti, P.A. Loukakos, M. Lisowski, U. Bovensiepen, H. Berger, S. Biermann, P.S. Cornaglia, A. Georges, M. Wolf, Phys. Rev. Lett. 97, 067402 (2006)

    ADS  Google Scholar 

  146. S. Wall, D. Brida, S.R. Clark, H.P. Ehrke, D. Jaksch, A. Ardavan, S. Bonora, H. Uemura, Y. Takahashi, T. Hasegawa, H. Okamoto, G. Cerullo, A. Cavalleri, Nat. Phys. 7, 114 (2011)

    Google Scholar 

  147. P. Schmidt, H. Monien, arXiv:cond-mat/0202046

    Google Scholar 

  148. V. Turkowski, J.K. Freericks, Phys. Rev. B 71, 085104 (2005)

    ADS  Google Scholar 

  149. R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.O. Almbladh, U. von Barth, in Time-Dependent Density Functional Theory, ed. by M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross. Lecture Notes in Physics, vol. 706 (Springer, Berlin, 2006)

    Google Scholar 

  150. M. Eckstein, M. Kollar, P. Werner, Phys. Rev. B 81, 115131 (2010)

    ADS  Google Scholar 

  151. M. Eckstein, M. Kollar, P. Werner, Phys. Rev. Lett. 103, 056403 (2009)

    ADS  Google Scholar 

  152. M. Eckstein, P. Werner, Phys. Rev. B 82, 115115 (2010)

    ADS  Google Scholar 

  153. M. Eckstein, A. Hackl, S. Kehrein, M. Kollar, M. Moeckel, P. Werner, F.A. Wolf, Eur. Phys. J. Special Topics 180, 217 (2010)

    ADS  Google Scholar 

  154. J.K. Freericks, H.R. Krishnamurthy, T. Pruschke, Phys. Rev. Lett. 102, 136401 (2009)

    ADS  Google Scholar 

  155. M. Eckstein, M. Kollar, Phys. Rev. B 78, 245113 (2008)

    ADS  Google Scholar 

  156. B. Moritz, T.P. Devereaux, J.K. Freericks, Phys. Rev. B 81, 165112 (2010)

    ADS  Google Scholar 

  157. M. Eckstein, M. Kollar, Phys. Rev. B 78, 205119 (2008)

    ADS  Google Scholar 

  158. J.K. Freericks, V.M. Turkowski, V. Zlatić, Phys. Rev. Lett. 97, 266408 (2006)

    ADS  Google Scholar 

  159. M.T. Tran, Phys. Rev. B 78, 125103 (2008)

    MathSciNet  ADS  Google Scholar 

  160. J.K. Freericks, Phys. Rev. B 77, 075109 (2008)

    ADS  Google Scholar 

  161. A.V. Joura, J.K. Freericks, T. Pruschke, Phys. Rev. Lett. 101, 196401 (2008)

    ADS  Google Scholar 

  162. N. Tsuji, T. Oka, H. Aoki, Phys. Rev. B 78, 235124 (2008)

    ADS  Google Scholar 

  163. N. Tsuji, T. Oka, H. Aoki, Phys. Rev. Lett. 103, 047403 (2009)

    ADS  Google Scholar 

  164. M. Eckstein, T. Oka, P. Werner, Phys. Rev. Lett. 105, 146404 (2010)

    ADS  Google Scholar 

  165. N. Tsuji, T. Oka, P. Werner, H. Aoki, Phys. Rev. Lett. 106, 236401 (2011)

    ADS  Google Scholar 

  166. M. Eckstein, M. Kollar, Phys. Rev. Lett. 100, 120404 (2008)

    ADS  Google Scholar 

  167. M. Eckstein, M. Kollar, New J. Phys. 12, 055012 (2010)

    ADS  Google Scholar 

  168. N. Eurich, M. Eckstein, P. Werner, Phys. Rev. B 83, 155122 (2011)

    ADS  Google Scholar 

  169. M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008)

    ADS  Google Scholar 

  170. M. Moeckel, S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008)

    ADS  Google Scholar 

  171. M. Moeckel, S. Kehrein, Ann. Phys. 324, 2146 (2009)

    ADS  MATH  Google Scholar 

  172. M. Greiner, O. Mandel, T.W. Hänsch, I. Bloch, Nature 419, 51 (2002)

    ADS  Google Scholar 

  173. A. Rapp, G. Zarand, C. Honerkamp, W. Hofstetter, Phys. Rev. Lett. 98, 160405 (2007)

    ADS  Google Scholar 

  174. M. Snoek, I. Titvinidze, C. Toke, K. Byczuk, W. Hofstetter, New J. Phys. 10, 093008 (2008)

    ADS  Google Scholar 

  175. U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T.A. Costi, R.W. Helmes, D. Rasch, A. Rosch, Science 322, 1520 (2008)

    ADS  Google Scholar 

  176. J.K. Freericks, Transport in Multilayered Nanostructures – The Dynamical Mean-Field Approach (Imperial College Press, London, 2006)

    MATH  Google Scholar 

  177. M. Potthoff, W. Nolting, Phys. Rev. B 59, 2549 (1999)

    ADS  Google Scholar 

  178. M. Takizawa, H. Wadati, K. Tanaka, M. Hashimoto, T. Yoshida, A. Fujimori, A. Chikamtsu, H. Kumigashira, M. Oshima, K. Shibuya, T. Mihara, T. Ohnishi, M. Lippmaa, M. Kawasaki, H. Koinuma, S. Okamoto, A.J. Millis, Phys. Rev. Lett. 97, 057601 (2006)

    ADS  Google Scholar 

  179. L. Chen, J.K. Freericks, Phys. Rev. B 75, 1251141 (2007)

    Google Scholar 

  180. K. Byczuk, in Condensed Matter Physics in the Prime of the 21st Century: Phenomena, Materials, Ideas, Methods, ed. by J. Jedrzejewski (World Scientific, Singapore, 2008), p. 1

    Google Scholar 

  181. R.W. Helmes, T.A. Costi, A. Rosch, Phys. Rev. Lett. 100, 056403 (2008)

    ADS  Google Scholar 

Download references

Acknowledgments

We thank Jim Allen, Vladimir Anisimov, Nils Blümer, Ralf Bulla, Liviu Chioncel, Theo Costi, Vlad Dobrosavljević, Peter van Dongen, Martin Eckstein, Volker Eyert, Florian Gebhard, Karsten Held, Walter Hofstetter, Vaclav Janiš, Anna Kauch, Stefan Kehrein, Georg Keller, Gabi Kotliar, Jan Kuneš, Ivan Leonov, Walter Metzner, Michael Moeckel, Igor Nekrasov, Thomas Pruschke, Xinguo Ren, Shigemasa Suga, Götz Uhrig, Martin Ulmke, Ruud Vlaming, Philipp Werner, and Unjong Yu for valuable collaborations. Support by the Deutsche Forschungsgemeinschaft through TRR 80 and FOR 1346 is gratefully acknowledged. KB was also supported by the grant N N202 103138 of the Polish Ministry of Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Vollhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vollhardt, D., Byczuk, K., Kollar, M. (2012). Dynamical Mean-Field Theory. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21831-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21831-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21830-9

  • Online ISBN: 978-3-642-21831-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics