Skip to main content

SEMD Based Sparse Gabor Representation for Eyeglasses-Face Recognition

  • Conference paper
Image Analysis and Recognition (ICIAR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6754))

Included in the following conference series:

  • 1103 Accesses

Abstract

Sparse representation for face recognition has been exploited in past years. Several sparse representation algorithms have been developed. In this paper, a novel eyeglasses-face recognition approach, SEMD Based Sparse Gabor Representation, is proposed. Firstly, for a robust representation to misalignment, a sparse Gabor representation is proposed. Secondly, spatially constrained earth mover’s distance is employed instead of Euclidean distance to measure the similarity between original data and reconstructed data. The proposed algorithm for eyeglasses-face recognition has been evaluated under different eyeglasses-face databases. The experimental results reveal that the proposed approach is validity and has better recognition performance than that obtained using other traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belhumeur, P.N.: Ongoing Challenges in Face Recognition. In: Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2005 Symposium, pp. 5–14 (2005)

    Google Scholar 

  2. Saito, Y., Kenmochi, Y., Kotani, K.: Extraction of a Symmetric Object for Eyeglass Face Analysis Using Active Contour Model. In: International Conference on Image Processing, Vancouver, Canada, vol. II, pp. 231–234 (September 2000)

    Google Scholar 

  3. Jing, Z., Mariani, R.: Glasses Detection and Extraction by Deformable Contour. In: Proc. Int’l Conf. Pattern Recognition, pp. 933–936 (August 2000)

    Google Scholar 

  4. Wu, H., et al.: Glasses Frame Detection with 3D Hough Transform. In: Proc. Int’l Conf. Pattern Recognition, pp. 346–349 (August 2002)

    Google Scholar 

  5. Saito, Y., Kenmochi, Y., Kotani, K.: Estimation of Eyeglassless Facial Images Using Principal Component Analysis. In: Proc. Int’l Conf. Image Processing, vol. 4, pp. 197–201 (October 1999)

    Google Scholar 

  6. Park, J.-S., Oh, Y.-H., Ahn, S.-C., Lee, S.-W.: Glasses Removal from Facial Image Using Recursive PCA Reconstruction. In: Proc. Int’l Conf. Audio- and Video-based Biometric Person Authentication, pp. 369–376 (June 2003)

    Google Scholar 

  7. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transaction on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)

    Article  Google Scholar 

  8. Song, C., Yin, B., Sun, Y.: Adaptively Doubly Weighted Sub-pattern LGBP for Eyeglasses-face Recognition. Journal of Computational Information Systems 6(1), 63–70 (2010)

    Google Scholar 

  9. Wagner, A., Wright, J., Ganesh, A., Zhou, Z., Ma, Y.: Towards a Practical Face Recognition System: Robust Registration and Illumination by Sparse Representation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 4, pp. 597–604 (2009)

    Google Scholar 

  10. Huang, J., Huang, X., Metaxas, D.: Simultaneous image transformation and sparse representation recovery. In: IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, pp. 1–8 (2008)

    Google Scholar 

  11. Shan, S., Gao, W., Chang, Y., Cao, B., Yang, P.: Review the strength of Gabor features for face recognition from the angle of its robustness to misalignment. In: Proceedings of ICPR 2004, vol. I, pp. 338–341 (2004)

    Google Scholar 

  12. Xu, D., Yan, S., Luo, J.: Face recognition using spatially constrained earth mover’s distance. IEEE Trans. on Image Processing 17(11), 2256–2260 (2008)

    Article  MathSciNet  Google Scholar 

  13. Qiao, L., Chen, S., Tan, X.: Sparsity Preseving Projections with Applications to Face Recognition. Pattern Recognition, 331–341 (2010)

    Google Scholar 

  14. Nagesh, P., Li, B.: A Compressive Sensing Approach for Expressiong-Invariant Face Recognition. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1518–1525 (2009)

    Google Scholar 

  15. Ji, Y.F., Lin, T., Zha, H.B.: Mahalanobis distance based non-negative sparse representation for face recognition. In: ICMLA (2009)

    Google Scholar 

  16. Zhou, W., Ahrary, A., Kamata, S.-i.: Face Recognition using Local Quaternion Patters and Weighted Spatially constrained Earth Mover’s Distance. In: The 13th IEEE International Symposium on Consumer Eletronics, pp. 285–289 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, C., Yin, B., Sun, Y. (2011). SEMD Based Sparse Gabor Representation for Eyeglasses-Face Recognition. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2011. Lecture Notes in Computer Science, vol 6754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21596-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21596-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21595-7

  • Online ISBN: 978-3-642-21596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics