Skip to main content

Anisotropic Mass-Spring Method Accurately Simulates Mitral Valve Closure from Image-Based Models

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6666))

Abstract

Heart valves are functionally complex, making surgical repair difficult. Simulation-based surgical planning could facilitate repair, but current finite element studies are prohibitively slow for rapid, clinically-oriented simulations. An anisotropic, nonlinear mass-spring (M-S) model is used to approximate the behavior of valve leaflets and applied to fully image-based mitral valve models to simulate valve closure for fast applications like intraoperative surgical planning. This approach is used to simulate a technique used in valve repair and to assess the role of chordae in determining the closed configuration of the valve. Direct image-based comparison is used for validation. Results of M-S model simulations showed that it is possible to build fully image-based models of the mitral valve and to rapidly simulate closure with sub-millimeter accuracy. Chordae, which are presently difficult to image, are shown to be strong determinants of closed valve shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vahanian, A., Baumgartner, H., Bax, J., Butchart, E., Dion, R., Filippatos, G., Flachskampf, F., Hall, R., Iung, B., Kasprzak, J., Nataf, P., Tornos, P., Torracca, L., Wenink, A.: Grupo de Trabajo sobre el Tratamiento de las Valvulopatias de la Sociedad Europea de Cardiologia: Guidelines on the management of valvular heart disease. Rev. Esp. Cardiol. 60, 1e–50e (2007)

    Google Scholar 

  2. Kunzelman, K.S., Einstein, D.R., Cochran, R.P.: Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 1393–1406 (2007)

    Article  Google Scholar 

  3. Burlina, P., Sprouse, C., DeMenthon, D., Jorstad, A., Juang, R., Contijoch, F., Abraham, T., Yuh, D., McVeigh, E.: Patient-specific modeling and analysis of the mitral valve using 3D-TEE. In: Navab, N., Jannin, P. (eds.) IPCAI 2010. LNCS, vol. 6135, pp. 135–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Wenk, J.F., Zhang, Z., Cheng, G., Malhotra, D., Acevedo-Bolton, G., Burger, M., Suzuki, T., Saloner, D.A., Wallace, A.W., Guccione, J.M., Ratcliffe, M.B.: First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann. Thorac. Surg. 89, 1546–1553 (2010)

    Article  Google Scholar 

  5. Persson, P.-O., Strang, G.: A Simple Mesh Generator in MATLAB. SIAM Review 46, 329–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hammer, P.E., Sacks, M.S., del Nido, P.J., Howe, R.D.: Mass-spring model for simulation of heart valve tissue mechanical behavior. Ann. Biomed. Eng. (2011) (in press)

    Google Scholar 

  7. Sacks, M.S., Yoganathan, A.P.: Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 1369–1391 (2007)

    Article  Google Scholar 

  8. Kunzelman, K.S., Cochran, R.P., Chuong, C., Ring, W.S., Verrier, E.D., Eberhart, R.D.: Finite element analysis of the mitral valve. J. Heart Valve Dis. 2, 326–340 (1993)

    Google Scholar 

  9. Cohn, L.H. (ed.): Cardiac Surgery in the Adult. McGraw-Hill, New York (2008)

    Google Scholar 

  10. Kunzelman, K.S., Cochran, R.P., Verrier, E.D., Eberhart, R.C.: Anatomic basis for mitral valve modelling. J. Heart Valve Dis. 3, 491–496 (1994)

    Google Scholar 

  11. Schneider, R.J., Perrin, D.P., Vasilyev, N.V., Marx, G.R., del Nido, P.J., Howe, R.D.: Mitral annulus segmentation from 3D ultrasound using graph cuts. IEEE Trans. Med. Imaging 29, 1676–1687 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hammer, P.E., del Nido, P.J., Howe, R.D. (2011). Anisotropic Mass-Spring Method Accurately Simulates Mitral Valve Closure from Image-Based Models. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics