Skip to main content

Cellulose Based Blends, Composites and Nanocomposites

  • Chapter
  • First Online:
Advances in Natural Polymers

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 18))

Abstract

Cellulose is the most abundant natural polymer on earth. It is the major constituent of cotton and wood, which together are the basic resources for all cellulose based products such as paper, textiles, construction materials, etc. Cellulose is also used as raw material for the production of blends, composites and nanocomposites which have a variety of different applications. In this chapter we review the main characteristics and properties of cellulose as well as its most promising potential applications emphasizing the use of composites reinforced with lignocellulosic fibers, nanocomposites reinforced with cellulose whiskers and bacterial cellulose nanocomposites. First, we start describing the structure and properties of cellulose at the molecular, supramolecular and morphological level. We present a review of cellulose whiskers, including the main processing techniques used for their preparation, as well as the influence of the processing conditions on the characteristics of such whiskers. We continue describing the manufacture of cellulose based blends, composites and nanocomposites. Composites reinforced with lignocellulosic macro-fibers as well as nanocomposites reinforced with cellulose whiskers and bacterial cellulose nanofibers are reviewed in this section. Finally, we present several applications for cellulose based composites and nanocomposites. This last section includes biomedical, optoelectronic and electrical applications as well as the use of cellulose for the preparation of high strength “nanopapers” and materials for packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imai, M., Ikari, K., Suzuki, I.: High-performance hydrolysis of cellulose using mixed cellulose species and ultrasonication pretreatment. Biochem. Eng. J. 17, 19–23 (2003)

    Google Scholar 

  2. Jarvis, M.: Cellulose stacks up. Nature 426, 611–612 (2003)

    CAS  Google Scholar 

  3. Holtzapple, M.T.: Cellulose. In: Macrae, R., Robinson, R.K., Saddler, M.J. (eds.) Encyclopedia of food science food technology and nutrition. London Academic Press, UK (1993)

    Google Scholar 

  4. Klemm, D., Philipp, B., Heinze, T., Heinze, U., Wagenknecht, W.: Comprehensive Cellulose Chemistry, Fundamentals and Analytical Methods, vol. 1. Wiley-VCH, Germany (1998)

    Google Scholar 

  5. Dufresne, A.: Polysaccharide nanocrystals reinforced nanocomposites. Can. J. Chem. 86, 484–494 (2008)

    CAS  Google Scholar 

  6. Wang, W., Cai, Z., Yu, J.: Study on the chemical modification process of jute fiber. J. Eng. Fibers Fabr. 3, 1–11 (2008)

    CAS  Google Scholar 

  7. Krässig, H.A.: Cellulose: Structure, Accessibility, and Reactivity. Gordon and Breach Science Publishers, Switzerland (1993)

    Google Scholar 

  8. Matthysse, A.G., Deschet, K., Williams, M., Marry, M., White, A.R., Smith, W.C.: A functional cellulose synthase from ascidian epidermis. Proc. Natl. Acad. Sci. 101, 986–991 (2004)

    CAS  Google Scholar 

  9. Jonas, R., Farah, L.F.: Production and application of microbial cellulose. Polym. Degrad. Stab. 59, 101–106 (1998)

    CAS  Google Scholar 

  10. Iguchi, M., Yamanaka, S., Budhiono, A.: Review bacterial cellulose: a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000)

    CAS  Google Scholar 

  11. Sreeramulu, G., Zhu, Y., Knol, W.: Kombucha fermentation and its antimicrobial activity. J. Agric. Food Chem. 48, 2589–2594 (2000)

    CAS  Google Scholar 

  12. Grande, C.J., Torres, F.G., Gomez, C.M., Troncoso, O.P., Canet-Ferrer, J., Martínez-Pastor, J.: Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym. Polym. Compos. 16, 181–185 (2008)

    CAS  Google Scholar 

  13. Torres, F.G., Troncoso, O.P., Lopez, D., Grande, C., Gomez, C.M.: Reversible stress softening and stress recovery of cellulose networks. Soft Matter 5, 4185–4190 (2009)

    CAS  Google Scholar 

  14. Torres, F.G., Grande, C.J., Troncoso, O.P., Gomez, C.M., Lopez, D.: Bacterial cellulose nanocomposites for biomedical applications. In: Kumar, S.A., Thiagarajan, S., Wang, F. (eds.) Biocompatible Nanomaterials: Synthesis Characterization and Application in Analytical Chemistry. Nova Science Publishers, USA (2010)

    Google Scholar 

  15. Ring, D.F., Nashed, W., Dow, T.: Liquid loaded pad for medical applications. US patent 4(588), 400 (1986)

    Google Scholar 

  16. Purves, C.B.: Chemical nature of cellulose and its derivatives. In: Ott, E., Spurlin, H.M. (eds.) Cellulose and Cellulose Derivatives: Part 1. Wiley-Interscience, USA (1954)

    Google Scholar 

  17. Marchessault, R.H., Sundararajan, P.R.: Cellulose. In: Aspinall, G. (ed.) The Polysaccharides. Academic Press, USA (1983)

    Google Scholar 

  18. Kontturi, E.J.: Surface Chemistry of Cellulose: From Natural Fibres to Model Surfaces. Technische Universiteit Eindhoven, Germany (2005)

    Google Scholar 

  19. Krässig, H.: Cellulose, Polymer Monographs Volume 11. Gordon and Breach Science Publishers, Amsterdam (1996)

    Google Scholar 

  20. Klemm, D., Heublein, B., Fink, H.-P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. 44, 3358–3393 (2005)

    CAS  Google Scholar 

  21. Liang, C.Y., Marchessault, R.H.: Infrared spectra of crystalline polyssacharides II. Native celluloses in the region from 640 to 1700 cm-1. J. Polym. Sci. 39, 269–278 (1959)

    CAS  Google Scholar 

  22. Blackwell, J., Kolpak, F.J., Gardner, K.H.: Structures of native and regenerated celluloses. ACS Symp. Ser. 48, 42–55 (1977)

    CAS  Google Scholar 

  23. Nishikawa, S., Ono, S.: Transmission of X-rays through fibrous, lamellar and granular substances. Proc. Tokyo Math. Phys. Soc. 7, 131–138 (1913)

    CAS  Google Scholar 

  24. Cousins, S.K., Brown Jr, R.M.: Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by Van de Waals forces as the initial step in crystallization. Polymer 36, 3885–3888 (1995)

    CAS  Google Scholar 

  25. Cousins, S.K., Brown Jr, R.M.: X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization. Polymer 38, 897–902 (1997)

    CAS  Google Scholar 

  26. O’Sullivan, A.C.: Cellulose: the structure slowly unravels. Cellulose 4, 173–207 (1997)

    Google Scholar 

  27. Klemm, D., Schumann, D., Kramer, F., Hebler, N., Hornung, M., Schumauder, H.P., Marsch, S.: Nanocelluloses as innovative polymers in research application. In: Klemm, D. (ed.) Polysaccharides II. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  28. Sugiyama, J., Persson, J., Chanzy, H.: Combined IR and electron diffraction study of the polymorphism of native cellulose. Macromolecules 24, 2461–2466 (1991)

    CAS  Google Scholar 

  29. Gardner, K.H., Blackwell, J.: The structure of native cellulose. Biopolymers 13, 1975–2001 (1974)

    CAS  Google Scholar 

  30. Roberts, E., Saxena, I.M., Brown, Jr.R.M. Does cellulose II occur in nature?. In: Bailey, G.W. (ed.) Proceedings of the 47th Annual Meeting of the Electron Microscopy, Society of America (1989b)

    Google Scholar 

  31. Marrinan, H.J., Mann, J.: Infrared spectra of the crystalline modifications of cellulose. J. Polym. Sci. 21, 301–311 (1956)

    Google Scholar 

  32. Hayashi, J., Sufoka, A., Ohkita, J., Watanabe, S.: The conformation of existence of cellulose IIII, IIIII, IVI and IVII by X-ray method. J. Polym. Sci. Polym. Lett. 13, 23–27 (1975)

    CAS  Google Scholar 

  33. Davis, W.E., Barry, A.J., Peterson, F.C., King, A.J.: X-ray studies of reactions of cellulose in non-aqueous systems. II. Interaction of cellulose and primary amines. J. Am. Chem. Soc. 65, 1294–1300 (1943)

    CAS  Google Scholar 

  34. Sarko, A., Southwick, J., Hayashi, J.: Packing analysis of carbohydrates and polysaccharides 7. Crystal structure of cellulose IIII and its relationship to other cellulose polymorphs. Macromolecules 9, 857–863 (1976)

    CAS  Google Scholar 

  35. Sarko, A.: Cellulose: how much do we know about its structure. In: Kennedy, J.F. (ed.) Wood and Cellulosics: Industrial Utilization, Biotechnology, Structure and Properties. Ellis Horwood, UK (1987)

    Google Scholar 

  36. Hess, K., Kissig, H.: Zur Kenntnis der Hochtemperatur-Modifikation der Cellulose (Cellulose IV). Z. Phys. Chem. B 49, 235–239 (1941)

    Google Scholar 

  37. Gardiner, E.S., Sarko, A.: Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can. J. Chem. 63, 173–180 (1985)

    CAS  Google Scholar 

  38. Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010)

    CAS  Google Scholar 

  39. Fink, H.-P., Philipp, B., Zschunke, C., Hayn, M.: Structural changes of LOPD cellulose in the original and mercerized state during enzymatic hydrolysis. Acta Polym. 43, 270–274 (1992)

    CAS  Google Scholar 

  40. Cannon, R.E., Anderson, S.M.: Biogenesis of bacterial cellulose. Crit. Rev. Microbiol. 17, 435–447 (1991)

    CAS  Google Scholar 

  41. Sakurada, I., Nukushina, Y., Ito, T.: Experimental determination of elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci. 57, 651–660 (1962)

    CAS  Google Scholar 

  42. Battista, O.A.: Hydrolysis and crystallization of cellulose. Ind. Eng. Chem. 42, 502–507 (1950)

    CAS  Google Scholar 

  43. Battista, O.A., Coppick, S., Howsmon, J.A., Morehead, F.F., Sisson, W.A.: Level-off degree of polymerization. Ind. Eng. Chem. 48, 333–335 (1956)

    CAS  Google Scholar 

  44. Revol, J.F., Bradford, H., Giasson, J., Marchessault, R.H., Gray, D.G.: Helicoidal self-ordering of cellulose microfibrils in aqueous solution. Int. J. Biol. Macromol. 14, 170–172 (1992)

    CAS  Google Scholar 

  45. Araki, J., Wada, M., Kuga, S., Okano, T.: Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. 142, 75–82 (1998)

    CAS  Google Scholar 

  46. de Rodriguez, N.L.G., Thielemans, W., Dufresne, A.: Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13, 261–270 (2006)

    Google Scholar 

  47. Whistler, R.L., BeMiller, J.M.: Carbohydrate chemistry for food scientists. American Association of Cereal Chemists, St Paul (1997)

    Google Scholar 

  48. El-Sakhawy, M., Hassan, M.: Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues. Carbohydr. Polym. 67, 1–10 (2007)

    CAS  Google Scholar 

  49. Helbert, W., Cavaillé, J.-Y., Dufresne, A.: Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polym. Compos. 17, 604–611 (1996)

    CAS  Google Scholar 

  50. Bondeson, D., Mathew, A., Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171–180 (2006)

    CAS  Google Scholar 

  51. Stromme, M., Mihranyan, A., Ek, R.: What to do with all these algae? Mater. Lett. 57, 569–572 (2002)

    CAS  Google Scholar 

  52. Dufresne, A., Cavaillé, J.-Y., Vignon, M.R.: Mechanical behavior of sheet prepared from sugar beet cellulose microfibrils. J. Appl. Polym. Sci. 64, 1185–1894 (1997)

    CAS  Google Scholar 

  53. Gopalan, N.K., Dufresne, A., Gandini, A., Belgacem, M.N.: Crab shell chitin whisker reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4, 1835–1842 (2003)

    Google Scholar 

  54. Dufresne, A., Vignon, M.R.: Improvement of starch film performances using cellulose microfibrils. Macromolecules 31, 2693–2696 (1998)

    CAS  Google Scholar 

  55. Dufresne, A., Dupeyre, D., Vignon, M.R.: Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J. Appl. Polym. Sci. 76, 2080–2092 (2000)

    CAS  Google Scholar 

  56. Heux, L., Chauve, G., Bonini, C.: Nonocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16, 8210–8212 (2000)

    CAS  Google Scholar 

  57. Favier, V., Dendievel, R., Canova, G., Cavaille, J.-Y., Gilormini, P.: Simulation and modeling of threedimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Mater. 45, 1557–1565 (1997)

    CAS  Google Scholar 

  58. Anglès, M.N., Dufresne, A.: Plasticized starch/tunicin whiskers nanocomposites : 2. mechanical behavior. Macromolecules 34, 2921–2931 (2001)

    Google Scholar 

  59. Ruiz, M.M., Cavaille, J.Y., Dufresne, A., Gerard, J.F., Graillat, C.: Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos. Interfaces 7, 117–131 (2000)

    CAS  Google Scholar 

  60. Sharples, A.: The hydrolysis of cellulose and its relation to structure, part 2. Trans. Faraday Soc. 54, 913–917 (1958)

    CAS  Google Scholar 

  61. Yachi, T., Hayashi, J., Takai, M., Shimizu, Y.J.: Supermolecular structure of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 325–343 (1983)

    CAS  Google Scholar 

  62. Hakansson, H., Ahlgren, P.: Acid hydrolysis of some industrial pulps, effect of hydrolysis conditions and raw material. Cellulose 12, 177–183 (2005)

    CAS  Google Scholar 

  63. Schurz, J., John, K.: Long periods in native and regenerated celluloses. Cellul. Chem. Technol. 9, 493–501 (1975)

    CAS  Google Scholar 

  64. Nishiyama, Y., Kim, U.J., Kim, D.Y., Katsumata, K.S., May, R.P., Langan, P.: Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4, 1013–1017 (2003)

    CAS  Google Scholar 

  65. Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C.: The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9, 57–65 (2008)

    CAS  Google Scholar 

  66. Bai, W., Holbery, J., Li, K.: A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16, 455–465 (2009)

    CAS  Google Scholar 

  67. de Souza Lima, M.M., Borsali, R.: Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18, 992–996 (2002)

    Google Scholar 

  68. Okano, T., Kuga, S., Wada, M., Araki, J., Ikuina, J.: Nisshin Oil Mills Ltd., Japan. JP Patent 98/151052 (1999)

    Google Scholar 

  69. Filpponen, I. Ph.D. Thesis, North Carolina State University; Raleigh, NC (2009)

    Google Scholar 

  70. Wang, N., Ding, E., Cheng, R.: Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24, 5 (2008)

    Google Scholar 

  71. Wang, N., Ding, E., Cheng, R.: Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48, 3486–3493 (2007)

    CAS  Google Scholar 

  72. Dong, X.M., Revol, J.F., Gray, D.G.: Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5, 19–32 (1998)

    CAS  Google Scholar 

  73. Beck-Candanedo, S., Roman, M., Gray, D.G.: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048–1054 (2005)

    CAS  Google Scholar 

  74. Bondeson, D., Kvien, I., Oksman, K.: Strategies for preparation of cellulose whiskers from microcrystalline cellulose as reinforcement in nanocomposites. In: Oksman, K., Sain, M. (eds.) Cellulose Nanocomposites: Processing, Characterization, and Properties; ACS Symposium Series 938. American Chemical Society, Washington (2006)

    Google Scholar 

  75. Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612–626 (2005)

    CAS  Google Scholar 

  76. de Souza Lima, M.M., Wong, J.T., Paillet, M., Borsali, R., Pecora, R.: Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19, 24–29 (2003)

    Google Scholar 

  77. Terech, P., Chazeau, L., Cavaille, J.-Y.: A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32, 1872–1875 (1999)

    CAS  Google Scholar 

  78. Kvien, I., Tanem, B.S., Oksman, K.: Characterization of cellulose whiskers and its nanocomposites by atomic force and electron microscopy. Biomacromolecules 6, 3160–3165 (2005)

    CAS  Google Scholar 

  79. Hanley, S.J., Giasson, J., Revol, J.F., Gray, D.G.: Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy. Polymer 33, 4639–4642 (1992)

    CAS  Google Scholar 

  80. Miller, A.F., Donald, A.M.: Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Biomacromolecules 4, 510–517 (2003)

    CAS  Google Scholar 

  81. Kamel, S.: Nanotechnology and its applications in lignocellulosic composites, a mini review; eXPRESS. Polym. Lett. 1, 546–575 (2007)

    CAS  Google Scholar 

  82. Lahiji, R.R., Reifenberger, R., Raman, A., Rudie, A., Moon, R.J. Characterization of cellulose nanocrystal surfaces by SPM; Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show; Boston, Massachusetts (2008)

    Google Scholar 

  83. Tashiro, K., Kobayashi, M.: Theoretical evaluation of three dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32, 1516–1526 (1991)

    CAS  Google Scholar 

  84. Sturcova, A., Davies, G.R., Eichhorn, S.J.: Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6, 1055 (2005)

    CAS  Google Scholar 

  85. Rusli, R., Eichhorn, S.J.: Determination of the stiffness of cellulose nanowhiskers and the fibre-matrix interface in a nanocomposite using Raman spectroscopy. Appl. Phys. Lett. 93, 033111 (2008)

    Google Scholar 

  86. Mayer, J.M., Elion, G.R., Buchanan, C.M., Sullivan, B.K., Pratt, S.D., Kaplan, D.L.: Biodegradable blends of cellulose acetate and starch: production and properties. J. Macromol. Sci. Part A 32, 775–785 (1995)

    Google Scholar 

  87. Freddi, G., Romano, M., Masafra, M.R., Tsukada, M.: Silk fibroin/cellulose blend films: preparation, structure, and physical properties. J. Appl. Polym. Sci. 56, 1537–1545 (1995)

    CAS  Google Scholar 

  88. Torres, F.G., Diaz, R.M.: Morphological characterisation of natural fibre reinforced thermoplastics (NFRTP) processed by extrusion, compression and rotational moulding. Polym. Polym. Compos. 12, 705–719 (2004)

    CAS  Google Scholar 

  89. Torres, F.G., Flores, R., Dienstmaier, J.F., Quintana, O.A.: Transport and flame properties of natural fibre reinforced polymers. Polym. Polym. Compos. 13, 753–764 (2005)

    CAS  Google Scholar 

  90. Torres, F.G., Arroyo, O.H., Gomez, C.: Processing and mechanical properties of natural fiber reinforced thermoplastic starch biocomposites. J. thermoplast. compos. mater. 20, 207–223 (2007)

    CAS  Google Scholar 

  91. Torres, F.G., Aragon, C.L.: Final product testing of rotational moulded natural fibre-reinforced polyethylene. Polym. Testing 25, 568–577 (2006)

    CAS  Google Scholar 

  92. Torres, F.G., Arroyo, O.H., Grande, C., Esparza, E.: Bio- and photo-degradation of natural fibre reinforced starch: based biocomposite. Int. J. Polym. Mater. 55, 1115–1132 (2006)

    CAS  Google Scholar 

  93. Grande, C., Torres, F.G.: Investigation of fiber organization and damage during single screw extrusion of natural fiber reinforced thermoplastics. Adv. Polym. Technol. 24, 145–156 (2005)

    CAS  Google Scholar 

  94. Kuruvilla, J., Sabu, T.I., Pavithran, C.: Dynamic mechanical properties of short sisal fiber reinforced low density polyethylene composites. J. Reinf. Plàst. Compos. 12, 139–154 (1993)

    Google Scholar 

  95. Herrera-Franco, P.J., Aguilar-Vega, M.J.: Effect of fiber treatment on mechanical properties of LDPE-henequen cellulosic fiber composites. J. Appl. Polym. Sci. 65, 197–207 (1997)

    CAS  Google Scholar 

  96. Youngquist, J.A.: Unlikely partners ? the marriage of wood and nonwood materials. For. Prod. J. 45, 25–30 (1995)

    CAS  Google Scholar 

  97. Sanadi, A.R., Caulfield, D.F., Rowell, R.M.: Reinforcing polypropylene with natural fibers. Plast. Eng. 4, 27–30 (1994)

    Google Scholar 

  98. Rowell, R.M.: Recent Advances in Lignocellulosic-Derived Composites. In: Chun, H.L (ed.) Polymers from Biobased Materials; Noyes Data Corp., New Jersey (1991)

    Google Scholar 

  99. Torres, F.G., Cubillas, M.L.: Study of the interfacial properties of natural fibre reinforced polyethylene. Polym. Testing 24, 694–698 (2005)

    CAS  Google Scholar 

  100. Sanadi, A.R., Caulfield, D.F., Jacobson, R.E., Rowell, R.M.: Renewable agricultural fibers as reinforcing fillers in plastics: mechanical properties of Kenaf fiber: polypropylene composites. Ind. Eng. Chem. Res. 34, 1889–1896 (1995)

    CAS  Google Scholar 

  101. Gómez, C., Torres, F.G., Nakamatsu, J., Arroyo, O.H.: Thermal and structural analysis of natural fibre reinforced starch based biocomposites. Int. J. Polym. Mater. 55, 893–907 (2006)

    Google Scholar 

  102. Chazeau, L., Cavaille, J.Y., Canova, G., Dendievel, R., Boutherin, B.: Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J. Appl. Polym. Sci. 71, 1797–1808 (1999)

    CAS  Google Scholar 

  103. Matos-Ruiz, M., Cavaille′, J.-Y., Dufresne, A., Graillat, C., Gerard, J.-F.: New waterborne epoxy coatings based on cellulose nanofillers. Macromol. Symp. 169, 211–222 (2001)

    Google Scholar 

  104. Cao, X., Habibi, Y., Lucia, L.A.J.: One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J. Mater. Chem. 19, 7137–7145 (2009)

    CAS  Google Scholar 

  105. Marcovich, N.E., Auad, M.L., Bellesi, N.E., Nutt, S.R., Aranguren, M.I.: Cellulose micro/nanocrystals reinforced polyurethanes. J. Mater. Res. 21, 870–881 (2006)

    CAS  Google Scholar 

  106. Favier, F., Chanzy, H., Cavaille, J.-Y.: Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28, 6365–6367 (1995)

    CAS  Google Scholar 

  107. Cavaille, J.-Y., Dufresne, A., Paillet, M., Azizi Samir, M.A.S., Alloin, F., Sanchez, J.Y.: French Patent FR2841255, (1999)

    Google Scholar 

  108. Grunnert, M., Winter, W.T.: Progress in the development of cellulose reinforced nanocomposites. Polym. Mater. Sci. Eng. 82, 232–233 (2000)

    Google Scholar 

  109. Noorani, S., Simonsen, J., Atre, S.: Polysulfone-Cellulose Nanocomposites. In: Oksman, K., Sain, M. (eds.) Cellulose Nanocomposites, Processing, Characterization and Properties, ACS Symposium Series 938, American Chemical Society, Washington (2006)

    Google Scholar 

  110. Grunert, M., Winter, W.T.: Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Env. 10, 27–30 (2002)

    CAS  Google Scholar 

  111. Petersson, L., Mathew, A.P., Oksman, K.J.: Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nanocomposites. Appl. Polym. Sci. 112, 2001–2009 (2009)

    CAS  Google Scholar 

  112. Habibi, Y., Goffin, A.-L., Schiltz, N., Duquesne, E., Dubois, P., Dufresne, : Bionanocomposites based on poly(e-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerizationA. J. Mater. Chem. 18, 5002–5010 (2008)

    CAS  Google Scholar 

  113. Paralikar, S.A., Simonsen, J., Lombardi, J.: Poly(vinyl alcohol)/cellulose nanocrystals barrier membranas. J. Membr. Sci. 320, 248–258 (2008)

    CAS  Google Scholar 

  114. Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., Dufresne, A.: Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 44, 2489–2498 (2008)

    CAS  Google Scholar 

  115. Wang, Y., Cao, X., Zhang, L.: Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol. Biosci. 6, 524–531 (2006)

    CAS  Google Scholar 

  116. Li, Q., Zhou, J., Zhang, L.: Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J. Polym. Sci., Part B: Polym. Phys. 47, 1069–1077 (2009)

    CAS  Google Scholar 

  117. Qi, H., Cai, J., Zhang, L., Kuga, S.: Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10, 1597–1602 (2009)

    CAS  Google Scholar 

  118. Noshiki, Y., Nishiyama, Y., Wada, M., Kuga, S., Magoshi, J.: Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J. Appl. Polym. Sci. 86, 3425–3429 (2002)

    Google Scholar 

  119. Dufresne, A.: Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos. Interfaces 7, 53–67 (2000)

    CAS  Google Scholar 

  120. Siqueira, G., Bras, J., Dufresne, A.: Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10, 425–432 (2009)

    CAS  Google Scholar 

  121. Flandin, L., Bidan, G., Brechet, Y., Cavaille, J.Y.: New nanocomposite materials made of an insulating matrix and conducting fillers: processing and properties. Polym. Compos. 21, 165–174 (2000)

    CAS  Google Scholar 

  122. Gea, S., Torres, F.G., Troncoso, O.P., Reynolds, C.T., Vilasecca, F., Iguchi, M., Peijs, T.: Biocomposites based on bacterial cellulose and apple and radish pulp. Int. Polym. Proc. 5, 497–501 (2007)

    Google Scholar 

  123. Nishino, T., Matsuda, I., Hirao, K.: All-cellulose composite. Macromolecules 37, 7683–7687 (2004)

    CAS  Google Scholar 

  124. Gindl, W., Keckes, J.: All-cellulose nanocomposites. Polymer 46, 10221–10225 (2005)

    CAS  Google Scholar 

  125. Capadona, J.R., van den Berg, O., Capadona, L.A., Schroeter, M., Rowan, S.J., Tyler, D.J., Weder, C.: A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat. Nanotechnol. 2, 765–769 (2007)

    CAS  Google Scholar 

  126. Capadona, J.R., Shanmuganathan, K., Tyler, D.J., Rowan, S.J., Weder, C.: Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319, 1370–1374 (2008)

    CAS  Google Scholar 

  127. Orts, W.J., Shey, J., Imam, S.H., Glenn, G.M., Guttman, M.E., Revol, J.F.: Application of cellulose microfibrils in polymer nanocomposites. J. Polym. Env. 13, 301–306 (2005)

    CAS  Google Scholar 

  128. Peresin, M.S., Habibi, Y., Zoppe, J.O., Pawlak, J.J., Rojas, O.J.: Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11, 674–681 (2010)

    CAS  Google Scholar 

  129. Park, W., Kang, M., Kim, H.-S., Jin, H.-J.: Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. Macromol. Symp. 240(250), 289–294 (2007)

    Google Scholar 

  130. de Mesquita, J.P., Donnici, C.L., Pereira, F.V.: Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11, 473–480 (2010)

    Google Scholar 

  131. Podsiadlo, P., Choi, S.Y., Shim, B., Lee, J., Cuddihy, M., Kotov, N.A.: Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6, 2914–2918 (2005)

    CAS  Google Scholar 

  132. Cranston, E.D., Gray, D.G.: Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci. Technol. Adv. Mater. 7, 319–321 (2006)

    CAS  Google Scholar 

  133. Grande, C.J., Torres, F.G., Gomez, C.M., Troncoso, O.P., Canet-Ferrer, J., Martínez-Pastor, J.: Development of self-asembled Bacterial cellulose-starch nanocomposites. Mater. Sci. Eng. C 29, 1098–1104 (2009)

    CAS  Google Scholar 

  134. Zimmermann, T., Pöhler, E., Geiger, T.: Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater. 6, 754–761 (2004)

    Google Scholar 

  135. Zimmermann, T., Pöhler, E., Schwaller, P.: Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv. Eng. Mater. 7, 1156–1161 (2005)

    CAS  Google Scholar 

  136. Stauss, S., Schwaller, P., Bucaille, J.-L., Blank, E., Michler, J.: Determining the stress-strain behaviour of small devices by nanoindentation in combination with inverse methods. Microelectron. Eng. 67, 818–825 (2003)

    Google Scholar 

  137. Favier, V., Canova, G.R., Cavaille, J.-Y., Chanzy, H., Dufresne, A., Gauthier, C.: Nanocomposites materials from latex and cellulose whiskers. Polym. Adv. Technol. 6, 351–355 (1995)

    CAS  Google Scholar 

  138. Anglès, M.N., Dufresne, A.: Plasticized starch/tunicin whiskers nanocomposites: 1. Struct. anal. Macromol. 33, 8344–8353 (2000)

    Google Scholar 

  139. Hajji, P., Cavaille, J.Y., Favier, V., Gauthier, C., Vigier, G.: Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym. Compos. 17, 612–619 (1996)

    CAS  Google Scholar 

  140. Mathew, A.P., Dufresne, A.: Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3, 609–617 (2002)

    CAS  Google Scholar 

  141. Chang, J.-H., Nam, S.W., Jang, S.-W.: Mechanical and morphological properties of lyocell blends: comparison with lyocell nanocomposites (I). J. Appl. Polym. Sci. 106, 2970–2977 (2007)

    CAS  Google Scholar 

  142. Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., Gatenholm, P.: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26, 419–431 (2005)

    CAS  Google Scholar 

  143. Andersson, J., Stenhamre, H., Bäckdahl, H., Gatenholm, P.: Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J. Biomed. Mater. Res., Part A 94, 1124–1132 (2010)

    Google Scholar 

  144. Czaja, W., Krystynowicza, A., Bielecki, S., Malcolm Brown Jr, R.: Microbial cellulose: the natural power to heal wounds. Biomaterials 27, 145–151 (2006)

    CAS  Google Scholar 

  145. Czaja, W.K., Young, D.J., Kawecki, M., Brown Jr, R.M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1–12 (2007)

    CAS  Google Scholar 

  146. Cienchanska, D.: Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text. Eastern Eur. 12, 69–72 (2004)

    Google Scholar 

  147. Legeza, V.I., Galenko-Yaroshevskii, V.P., Zinovev, E.V., Paramonov, B.A., Kreichman, G.S., Turkovskii, I.I., Gumenyuk, E.S., Karnovich, A.G., Khripunov, A.K.: Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull. Exp. Biol. Med. 138, 311–315 (2004)

    CAS  Google Scholar 

  148. Wan, W.K., Millon, L.E.: Poly(vinyl alcohol)-bacterial cellulose nanocomposite. U.S. Pat. Appl. Publ. US 2005037082 A1, 16 (2005)

    Google Scholar 

  149. Sokolnicki, A.M., Fisher, R.J., Harrah, T.P., Kaplan, D.L.: Permeability of bacterial cellulose membranes. J. Membr. Sci. 272, 15–27 (2006)

    CAS  Google Scholar 

  150. Charpentier, P.A., Maguire, A., Wan, W.: Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl. Surf. Sci. 252, 6360–6367 (2006)

    CAS  Google Scholar 

  151. Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized cellulose: artificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561–1603 (2001)

    CAS  Google Scholar 

  152. Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P.: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141–2149 (2006)

    Google Scholar 

  153. Wan, W.K., Hutter, J.L., Millon, L., Guhados, G.: Bacterial cellulose and its nanocomposites for biomedical applications. ACS Symp. Ser. 938, 221–241 (2006)

    CAS  Google Scholar 

  154. Grande, C.J., Torres, F.G., Gomez, C.M., Bañó, C.: Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 5, 1605–1615 (2009)

    CAS  Google Scholar 

  155. Samir, M.A.S., Alloin, F., Sanchez, J.-Y., Dufresne, A.: Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37, 4839–4844 (2004)

    CAS  Google Scholar 

  156. Nystrom, G., Razaq, A., Stromme, M., Nyholm, L., Mihranyan, A.: Ultrafast all-polymer paper-based batteries. Nano Lett. 9, 3635–3639 (2009)

    Google Scholar 

  157. Razaq, A., Mihranyan, A., Welch, K., Nyholm, L., Strømme, M.: Influence of the type of oxidant on anion exchange properties of fibrous Cladophora cellulose/polypyrrole composites. J. Phys. Chem. B 113, 426–433 (2009)

    CAS  Google Scholar 

  158. Gelin, K., Mihranyan, A., Razaq, A., Nyholm, L., Strømme, M.: Potential controlled anion absorption in a novel high surface area composite of Cladophora cellulose and polypyrrole. Electrochim. Acta 54, 3394–3401 (2009)

    CAS  Google Scholar 

  159. Stromme, M., Frenning, G., Razaq, A., Gelin, K., Nyholm, L., Mihranyan, A.: Ionic motion in polypyrrole—cellulose composites: trap release mechanism during potentiostatic reduction. J. Phys. Chem. B 113, 4582–4589 (2009)

    CAS  Google Scholar 

  160. Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M.: Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A Mater. Sci. Process. 81, 1109–1112 (2005)

    CAS  Google Scholar 

  161. Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H.: Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8, 1973–1978 (2007)

    CAS  Google Scholar 

  162. Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsuura, T., Hikita, M., Handa, K.: Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17, 153–155 (2005)

    CAS  Google Scholar 

  163. Podsiadlo, P., Sui, L., Elkasabi, Y., Burgardt, P., Lee, J., Miryala, A., Kusumaatmaja, W., Carman, M., Shtein, M., Kieffer, J., Lahann, J., Kotov, N.: Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23, 7901–7906 (2007)

    CAS  Google Scholar 

  164. Legnani, C., Vilani, C., Calil, V.L., Barud, H.S., Quirino, W.G., Achete, C.A., Ribeiro, S.J.L., Cremona, M.: Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517, 1016–1020 (2008)

    CAS  Google Scholar 

  165. Svagan, A.J., Samir, M.A.S.A., Berglund, L.A.: Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269 (2008)

    CAS  Google Scholar 

  166. van den Berg, O., Schroeter, M., Capadona, J.R., Weder, C.: Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J. Mater. Chem. 17, 2746–2753 (2007)

    Google Scholar 

  167. Agarwal, M., Lvov, Y., Varahramyan, K.: Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17, 5319–5325 (2006)

    CAS  Google Scholar 

  168. Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T.: Cellulose nanopaper structures of high toughness. Biomacromolecules 9, 1579–1585 (2008)

    CAS  Google Scholar 

  169. Sehaqui, H., Liu, H., Zhou, Q., Berglund, L.A.: Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11, 2195–2198 (2010)

    CAS  Google Scholar 

  170. Shin, Y., Exarhos, G.J.: Template synthesis of porous Titania using cellulose nanocrystals. Mater. Lett. 61, 2594–2597 (2007)

    CAS  Google Scholar 

  171. Dujardin, E., Blaseby, M., Mann, S.: Synthesis of Mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. J. Mater. Chem. 13, 696–699 (2003)

    CAS  Google Scholar 

  172. Araki, J., Kuga, S.: Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17, 4493–4496 (2001)

    CAS  Google Scholar 

  173. Roman, M., Winter, W.T.: Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5, 1671–1677 (2004)

    CAS  Google Scholar 

  174. Araki, J., Wada, M., Kuga, S.: Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17, 21–27 (2001)

    CAS  Google Scholar 

  175. Dong, X.M., Kimura, T., Revol, J.-F., Gray, D.G.: Effects of ionic strength on the isotropic—chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12, 2076–2082 (1996)

    CAS  Google Scholar 

  176. de Menezes, A.J., Siqueira, G., Curvelo, A., Dufresne, A.: Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50, 4552–4563 (2009)

    Google Scholar 

  177. Garcia de Rodriguez, N.L., Thielemans, W., Dufresne, A.: Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13, 261–270 (2006)

    CAS  Google Scholar 

  178. Revol, J.F.: On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr. Polym. 2, 123–134 (1982)

    CAS  Google Scholar 

  179. Araki, J., Wada, M., Kuga, S., Okano, T.: Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J. Wood Sci. 45, 258–261 (1999)

    CAS  Google Scholar 

  180. Capadona, J.R., Shanmuganathan, K., Trittschuh, S., Seidel, S., Rowan, S.J., Weder, C.: Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10, 712–716 (2009)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Torres, F.G., Troncoso, O.P., Torres, C., Grande, C.J. (2013). Cellulose Based Blends, Composites and Nanocomposites. In: Thomas, S., Visakh, P., Mathew, A. (eds) Advances in Natural Polymers. Advanced Structured Materials, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20940-6_2

Download citation

Publish with us

Policies and ethics