Skip to main content

A Strategic Framework for the Design of Recycling Networks for Lithium-Ion Batteries from Electric Vehicles

  • Conference paper
  • First Online:
Glocalized Solutions for Sustainability in Manufacturing

Abstract

In this paper, we develop a strategic framework for the design of recycling networks for spent lithium-ion batteries from electric vehicles. The framework provides an overview of possible configuration alternatives and an integrated approach for network planning and process configuration tasks. It describes requirements on a network as well as on a process level. For that purpose, we analyse general framework conditions concerning battery return, materials, and recycling processes. On that basis, it is possible to develop a mathematical optimisation model which enables decision support concerning the optimal evolvement of recycling sites, capacities, and processes over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Gaines, L., Cuenca, R. (2000): Costs of Lithium-Ion Batteries for Vehicles. Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy, Argonne, Illinois. http://www.doe.gov/bridge.

  2. U.S. Geological Survey (2010): Mineral commodity summaries 2010, Washington. http://minerals.usgs.gov/minerals/pubs/mcs/2010/mcs2010.pdf(accessed October 26, 2010).

  3. Dewulf, J., van der Vorst, G., Denturck, K., van Langenhove, H., Ghyoot, W., Tytgat, J., Vandeputte, K. (2010): Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings, in: Resources, Conservation and Recycling, Vol. 54, pp. 229–234.

    Article  Google Scholar 

  4. Deutscher Bundestag (2009): BattG. June 25, 2009.

    Google Scholar 

  5. Bundesministerium für Umwelt (2009): BattGDV. November 12, 2009.

    Google Scholar 

  6. Shukla, A. K., Prem Kumar, T. (2008): Materials for nextgeneration lithium batteries, in: Current Science, Vol. 94, No. 3, pp. 314–330.

    Google Scholar 

  7. Arora, P., Zhang, Z. J. (2004): Battery Separators, in: Chemical Review, Vol. 104, pp. 4419–4462.

    Article  Google Scholar 

  8. Book, M., Groll, M., Mosquet, X., Rizoulis, D., Sticher, G. (2009): The Comeback of The Electric Car? How Real, How Soon, and What Must Happen Next, 1/09 Rev.2.

    Google Scholar 

  9. Bundesministerium für Umwelt (2009): Programm zur Marktaktivierung für Elektrofahrzeuge, Berlin.

    Google Scholar 

  10. Sarre, G., Blanchard, P., Brouselly, M. (2004): Aging of lithium-ion batteries, in: Journal of Power Sources, Vol. 127, pp. 65–71.

    Article  Google Scholar 

  11. Marano, V., Onori, S., Guezennec, Y., Rizzoni, G., Madella, N. (2009): Lithium-ion Batteries Life Estimation for Plug-in Hybrid Electric Vehicles, in: 5th IEEE Vehicle Power and Propulsion Conference, VPPC '09, pp. 536–543.

    Google Scholar 

  12. Notter, D. A., Gauch, M., Widmer, R., Wäger, P., Stamp, A., Zah, R., Althaus, H.-J. (2010): Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles, in: Environmental Science & Technology, Vol. 44, pp. 6550–6556.

    Article  Google Scholar 

  13. Zackrisson, M., Avellán, L., Orlenius, J. (2010): Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles - Critical issues, in: Journal of Cleaner Production, Vol. 18, pp. 1517–1527.

    Article  Google Scholar 

  14. Xu, J., Thomas, H. R. F. R. W., Lum, K. R., Wang, J., Liang

    Google Scholar 

  15. B. (2008): A review of processes and technologies for the recycling of lithium-ion secondary batteries, in: Journal of Power Sources, Vol. 177, pp. 512–527.

    Article  Google Scholar 

  16. Kwade, A. (2010): LithoRec - auf dem Weg zum "intelligenten" Recycling von Traktionsbatterien, in: 7. Braunschweiger Symposium Hybrid-, Elektrofahrzeuge und Energiemanagement, Braunschweig.

    Google Scholar 

  17. Püchert, H. (1996): Ein Ansatz zur strategischen Planung von Kreislaufwirtschaftssystemen: dargestellt für das Altautorecycling und die Eisen- und Stahlindustrie. Mit einem Geleitw. von Otto Rentz, Dt. Univ.-Vlg., Wiesbaden.

    Google Scholar 

  18. Schultmann, F., Engels, B., Rentz, O. (2003): Closed-Loop Supply Chains for Spent Batteries, in: Interfaces, Vol. 33, No. 6, pp. 57–71.

    Article  Google Scholar 

  19. Walther, G., Spengler, T. S. (2005): Impact of WEEE-directive on reverse logistics in Germany, in: International Journal of Physical Distribution & Logistics Management, Vol. 35, No. 5, pp. 337–361.

    Article  Google Scholar 

  20. Walther, G., Spengler, T. S., Queiruga Dios, D. A. (2008):

    Google Scholar 

  21. Facility location planning for treatment of large household

    Google Scholar 

  22. appliances in Spain, in: International Journal of Environmental

    Google Scholar 

  23. Technology and Management, Vol. 8, No. 4, pp. 405–425.

    Google Scholar 

  24. Walther, G., Schatka, A., Spengler, T. S. (2007): Gestaltung

    Google Scholar 

  25. von Netzwerken zur Produktion von synthetischen

    Google Scholar 

  26. Biokraftstoffen der zweiten Generation, in: UWF -

    Google Scholar 

  27. Umweltwirtschaftsforum, Vol. 18, No. 1, pp. 61–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoyer, C., Kieckhäfer, K., Spengler, T.S. (2011). A Strategic Framework for the Design of Recycling Networks for Lithium-Ion Batteries from Electric Vehicles. In: Hesselbach, J., Herrmann, C. (eds) Glocalized Solutions for Sustainability in Manufacturing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19692-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19692-8_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19691-1

  • Online ISBN: 978-3-642-19692-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics