Skip to main content

Control of Neuronal Ploidy During Vertebrate Development

  • Chapter
  • First Online:
Cell Cycle in Development

Abstract

Somatic tetraploid neurons are present in different structures of the vertebrate nervous system, including cortex and retina. In this chapter, we provide evidence that these neurons can be widely detected in the chick nervous system. We also discuss mechanisms creating neuronal tetraploidy in vertebrates, concluding that the neurotrophin receptor p75 could be responsible for the generation of these neurons in most neural tissues, as previously observed in the retina. Somatic tetraploidy in the chick retina correlates with increased neurons’ soma size and dendritic arborization, giving rise to neurons known to innervate a specific layer of the optic tectum. Tetraploidy could therefore account for neuronal diversity in the normal nervous system. De novo generation of tetraploid neurons has been shown to occur in Alzheimer’s disease. This suggests that the morphological changes expected to occur in the affected neurons could lead to altered neuronal function, thus providing a basis for neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that somatic tetraploidy as used in this chapter refers only to the amount of DNA in the cell nucleus without implying a doubling of chromosomes rather than chromatids.

References

  • Arendt T, Brückner MK, Mosch B, Lösche A (2010) Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol 177:15–20

    Article  PubMed  Google Scholar 

  • Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1:549–553

    CAS  PubMed  Google Scholar 

  • Barker PA (2004) p75NTR is positively promiscuous: novel partners and new insights. Neuron 42:529–533

    Article  CAS  PubMed  Google Scholar 

  • Beier M, Franke A, Paunel-Görgülü AN, Scheerer N, Dünker N (2006) Transforming growth factor beta mediates apoptosis in the GCL during all programmed cell death periods of the developing murine retina. Neurosci Res 56:193–203

    Article  CAS  PubMed  Google Scholar 

  • Benzel I, Barde YA, Casademunt E (2001) Strain-specific complementation between NRIF1 and NRIF2, two zinc finger proteins sharing structural and biochemical properties. Gene 281:19–30

    Article  CAS  PubMed  Google Scholar 

  • Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel DV, Rosenthal A (1991) Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron 7:857–866

    Article  CAS  PubMed  Google Scholar 

  • Bowser R, Smith MA (2002) Cell cycle proteins in Alzheimer’s disease: plenty of wheels but no cycle. J Alzheimers Dis 4:249–254

    CAS  PubMed  Google Scholar 

  • Callaway EM (2005) Structure and function of parallel pathways in the primate early visual system. J Physiol 566:13–19

    Article  CAS  PubMed  Google Scholar 

  • Casademunt E, Carter BD, Benzel I, Frade JM, Dechant G, Barde YA (1999) The zinc finger protein NRIF interacts with the neurotrophin receptor p75NTR and participates in programmed cell death. EMBO J 18:6050–6061

    Article  CAS  PubMed  Google Scholar 

  • Chittka A, Chao MV (1999) Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor. Proc Natl Acad Sci USA 96:10705–10710

    Article  CAS  PubMed  Google Scholar 

  • Chittka A, Arevalo JC, Rodríguez-Guzmán M, Pérez P, Chao MV, Sendtner M (2004) The p75NTR-interacting protein SC1 inhibits cell cycle progression by transcriptional repression of cyclin E. J Cell Biol 164:985–996

    Article  CAS  PubMed  Google Scholar 

  • Coulson EJ, May LM, Sykes AM, Hamlin AS (2009) The role of the p75 neurotrophin receptor in cholinergic dysfunction in Alzheimer’s disease. Neuroscientist 15:317–323

    Article  CAS  PubMed  Google Scholar 

  • Crook JD, Peterson BB, Packer OS, Robinson FR, Troy JB, Dacey DM (2008) Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina. J Neurosci 28:11277–11291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Melo J, Zhou QP, Zhang Q, Zhang S, Fonseca M, Wigle JT, Eisenstat DD (2008) Dlx2 homeobox gene transcriptional regulation of Trkb neurotrophin receptor expression during mouse retinal development. Nucleic Acids Res 36:872–884

    Article  PubMed Central  PubMed  Google Scholar 

  • Dechant G, Barde YA (2002) The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci 5:1131–1136

    Article  CAS  PubMed  Google Scholar 

  • Diarra A, Geetha T, Potter P, Babu JR (2009) Signaling of the neurotrophin receptor p75 in relation to Alzheimer’s disease. Biochem Biophys Res Commun 390:352–356

    Article  CAS  PubMed  Google Scholar 

  • Donaldson AD, Blow JJ (1999) The regulation of replication origin activation. Curr Opin Genet Dev 9:62–68

    Article  CAS  PubMed  Google Scholar 

  • Dünker N, Schuster N, Krieglstein K (2001) TGF-beta modulates programmed cell death in the retina of the developing chick embryo. Development 128:1933–1942

    PubMed  Google Scholar 

  • Duronio RJ, Bonnette PC, O’Farrell PH (1998) Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F-DP transcription factor and cyclin E during the G1-S transition. Mol Cell Biol 18:141–151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105:297–306

    Article  CAS  PubMed  Google Scholar 

  • Fahnestock M, Michalski B, Xu B, Coughlin MD (2001) The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol Cell Neurosci 18:210–220

    Article  CAS  PubMed  Google Scholar 

  • Farah MH, Olson JM, Sucic HB, Hume RI, Tapscott SJ, Turner DL (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127:693–702

    CAS  PubMed  Google Scholar 

  • Feirabend HKP (1990) Development of longitudinal patterns in the cerebellum of the chicken (Gallus domesticus): a cytoarchitectural study on the genesis of cerebellar modules. Eur J Morphol 28:169–223

    CAS  PubMed  Google Scholar 

  • Ferrer I, Marín C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Martí E (1999) BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 58:729–739

    Article  CAS  PubMed  Google Scholar 

  • Fisher D (2011) Control of DNA replication by cyclin-dependent kinases in development. In: Kubiak JZ (ed) Cell cycle and development. Springer, Heidelberg

    Google Scholar 

  • Follette PJ, Duronio RJ, O’Farrell PH (1998) Fluctuations in cyclin E levels are required for multiple rounds of endocycle S phase in Drosophila. Curr Biol 8:235–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frade JM (2000) Unscheduled re-entry into the cell cycle induced by NGF precedes cell death in nascent retinal neurones. J Cell Sci 113:1139–1148

    CAS  PubMed  Google Scholar 

  • Frade JM (2002) Interkinetic nuclear movement in the vertebrate neuroepithelium: encounters with an old acquaintance. Prog Brain Res 136:67–71

    Article  PubMed  Google Scholar 

  • Frade JM (2005) Nuclear translocation of the p75 neurotrophin receptor cytoplasmic domain in response to neurotrophin binding. J Neurosci 25:1407–1411

    Article  CAS  PubMed  Google Scholar 

  • Frade JM, López-Sánchez N (2010) A novel hypothesis for Alzheimer’s disease based on neuronal tetraploidy induced by p75NTR. Cell Cycle 9:1934–1941

    Article  CAS  PubMed  Google Scholar 

  • Frade JM, Rodríguez-Tébar A, Barde YA (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383:166–168

    Article  CAS  PubMed  Google Scholar 

  • Frade JM, Bovolenta P, Martínez-Morales JR, Arribas A, Barbas JA, Rodríguez-Tébar A (1997) Control of early cell death by BDNF in the chick retina. Development 124:3313–3320

    CAS  PubMed  Google Scholar 

  • Fujita S (1964) Analysis of neuron differentiation in the central nervous system by tritiated thymidine autoradiography. J Comp Neurol 122:311–327

    Article  CAS  PubMed  Google Scholar 

  • Gonchoroff NJ, Katzmann JA, Currie RM, Evans EL, Houck DW, Kline BC, Greipp PR, Loken MR (1986) S-phase detection with an antibody to bromodeoxyuridine. Role of DNase pretreatment. J Immunol Methods 93:97–101

    Article  CAS  PubMed  Google Scholar 

  • Grafi G, Larkins BA (1995) Endoreduplication in maize endosperm: involvement of M phase-promoting factor inhibition and induction of S phase-related kinases. Science 269:1262–1264

    Article  CAS  PubMed  Google Scholar 

  • Hallböök F, Ibáñez CF, Persson H (1991) Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6:845–858

    Article  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  PubMed  Google Scholar 

  • Harada C, Harada T, Nakamura K, Sakai Y, Tanaka K, Parada LF (2006) Effect of p75NTR on the regulation of naturally occurring cell death and retinal ganglion cell number in the mouse eye. Dev Biol 290:57–65

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S (1996) A Cdc2 dependent checkpoint maintains diploidy in Drosophila. Development 122:1051–1058

    CAS  PubMed  Google Scholar 

  • Herman CJ, Lapham LW (1968) DNA content of neurons in the cat hippocampus. Science 160:537

    Article  CAS  PubMed  Google Scholar 

  • Herman CJ, Lapham LW (1969) Neuronal polyploidy and nuclear volumes in the cat central nervous system. Brain Res 15:35–48

    Article  CAS  PubMed  Google Scholar 

  • Hock C, Heese K, Hulette C, Rosenberg C, Otten U (2000) Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 57:846–851

    Article  CAS  PubMed  Google Scholar 

  • Hohn A, Leibrock J, Bailey K, Barde YA (1990) Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344:339–341

    Article  CAS  PubMed  Google Scholar 

  • Iourov IY, Vorsanova SG, Liehr T, Yurov YB (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34:212–220

    Article  CAS  PubMed  Google Scholar 

  • Italiano JE Jr, Shivdasani RA (2003) Megakaryocytes and beyond: the birth of platelets. J Thromb Haemost 1:1174–1182

    Article  CAS  PubMed  Google Scholar 

  • Jacoby R, Stafford D, Kouyama N, Marshak D (1996) Synaptic inputs to ON parasol ganglion cells in the primate retina. J Neurosci 16:8041–8056

    CAS  PubMed  Google Scholar 

  • Jones KR, Reichardt LF (1990) Molecular cloning of a human gene that is a member of the nerve growth factor family. Proc Natl Acad Sci USA 87:8060–8064

    Article  CAS  PubMed  Google Scholar 

  • Kusek JC, Greene RM, Pisano MM (2001) Expression of the E2F and retinoblastoma families of proteins during neural differentiation. Brain Res Bull 54:187–198

    Article  CAS  PubMed  Google Scholar 

  • Kuwako K, Taniura H, Yoshikawa K (2004) Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. J Biol Chem 279:1703–1712

    Article  CAS  PubMed  Google Scholar 

  • Lapham LW (1968) Tetraploid DNA content of Purkinje neurons of human cerebellar cortex. Science 159:310–312

    Article  CAS  PubMed  Google Scholar 

  • Lasek RJ, Dower WJ (1971) Aplysia californica: analysis of nuclear DNA in individual nuclei of giant neurons. Science 172:278–280

    Article  CAS  PubMed  Google Scholar 

  • Latasa MJ, Cisneros E, Frade JM (2009) Cell cycle control of Notch signaling and the functional regionalization of the neuroepithelium during vertebrate neurogenesis. Int J Dev Biol 53:895–908

    Article  CAS  PubMed  Google Scholar 

  • Levi-Montalcini R, Hamburger V (1951) Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool 116:321–361

    Article  CAS  PubMed  Google Scholar 

  • Lewin GR, Barde YA (1996) Physiology of the neurotrophins. Annu Rev Neurosci 19:289–317

    Article  CAS  PubMed  Google Scholar 

  • Lilly MA, Duronio RJ (2005) New insights into cell cycle control from the Drosophila endocycle. Oncogene 24:2765–2775

    Article  CAS  PubMed  Google Scholar 

  • López-Sánchez N, Frade JM (2002) Control of the cell cycle by neurotrophins: lessons from the p75 neurotrophin receptor. Histol Histopathol 17:1227–1237

    PubMed  Google Scholar 

  • López-Sánchez N, González-Fernández Z, Niinobe M, Yoshikawa K, Frade JM (2007) Single mage gene in the chicken genome encodes CMage, a protein with functional similarities to mammalian type II Mage proteins. Physiol Genomics 30:156–171

    Article  PubMed  Google Scholar 

  • Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, Yancopoulos GD (1990) Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science 247:1446–1451

    Article  CAS  PubMed  Google Scholar 

  • Mayordomo R, Valenciano AI, De la Rosa EJ, Hallbook F (2003) Generation of retinal ganglion cells is modulated by caspase-dependent programmed cell death. Eur J Neurosci 18:1744–1750

    Article  PubMed  Google Scholar 

  • McConnell JA, Sechrist JW (1980) Identification of early neurons in the brainstem and spinal cord: I an autoradiographic study in the chick. J Comp Neurol 192:769–783

    Article  CAS  PubMed  Google Scholar 

  • Menezes JR, Luskin MB (1994) Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci 14:5399–5416

    CAS  PubMed  Google Scholar 

  • Mey J, Thanos S (2000) Development of the visual system of the chick I. Cell differentiation and histogenesis. Brain Res Brain Res Rev 32:343–379

    Article  CAS  PubMed  Google Scholar 

  • Moh C, Kubiak JZ, Bajic VP, Xiongwei Z, Hyoung-gon L, Smith MA (2011) Cell cycle deregulation in the neurons of Alzheimer’s disease. In: Kubiak JZ (ed) Cell cycle and development. Springer, Heidelberg

    Google Scholar 

  • Morillo SM, Escoll P, de la Hera A, Frade JM (2010) Somatic tetraploidy in specific chick retinal ganglion cells induced by nerve growth factor. Proc Natl Acad Sci USA 107:109–114

    Article  CAS  PubMed  Google Scholar 

  • Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T (2007) Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci 27:6859–6867

    Article  CAS  PubMed  Google Scholar 

  • Museridze DP, Svanidze IK, Macharashvili DN (1975) Content of DNA and dry weight of the nuclei of neurons of the external geniculate body and retina of the eye in guinea pigs. Sov J Dev Biol 5:269–272

    CAS  PubMed  Google Scholar 

  • Naito J, Chen Y (2004) Morphologic analysis and classification of ganglion cells of the chick retina by intracellular injection of Lucifer Yellow and retrograde labeling with DiI. J Comp Neurol 469:360–376

    Article  PubMed  Google Scholar 

  • Ochocinska MJ, Hitchcock PF (2009) NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish. Mech Dev 126:128–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paltsyn AA, Kolokol’chikova EG, Konstantinova NB, Romanova GA, Shakova FM, Kubatiev AA (2008) Heterokaryon formation as a method for neuron regeneration in postischemic injury to cerebral cortex in rats. Bull Exp Biol Med 146:485–488

    Article  CAS  PubMed  Google Scholar 

  • Pincheira R, Baerwald M, Dunbar JD, Donner DB (2009) Sall2 is a novel p75NTR-interacting protein that links NGF signalling to cell cycle progression and neurite outgrowth. EMBO J 28:261–273

    Article  CAS  PubMed  Google Scholar 

  • Prada C, Puelles L, Génis-Gálvez JM (1981) A Golgi study on the early sequence of differentiation of ganglion cells in the chick embryo retina. Anat Embryol 161:305–317

    Article  CAS  PubMed  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    Article  CAS  PubMed  Google Scholar 

  • Rohrer H, Henke-Fahle S, el-Sharkawy T, Lux HD, Thoenen H (1985) Progenitor cells from embryonic chick dorsal root ganglia differentiate in vitro to neurons: biochemical and electrophysiological evidence. EMBO J 4:1709–1714

    CAS  PubMed  Google Scholar 

  • Rosenthal A, Goeddel DV, Nguyen T, Lewis M, Shih A, Laramee GR, Nikolics K, Winslow JW (1990) Primary structure and biological activity of a novel human neurotrophic factor. Neuron 4:767–773

    Article  CAS  PubMed  Google Scholar 

  • Royzman I, Whittaker AJ, Orr-Weaver TL (1997) Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. Genes Dev 11:1999–2011

    Article  CAS  PubMed  Google Scholar 

  • Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A, Tannis LL, Verdi JM, Barker PA (2000) NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 27:279–288

    Article  CAS  PubMed  Google Scholar 

  • Sauer FC (1935) Mitosis in the neural tube. J Comp Neurol 62:377–405

    Article  Google Scholar 

  • Shcherbata HR, Althauser C, Findley SD, Ruohola-Baker H (2004) The mitotic-to-endocycle switch in Drosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions. Development 131:3169–3181

    Article  CAS  PubMed  Google Scholar 

  • Sigrist SJ, Lehner CF (1997) Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90:671–681

    Article  CAS  PubMed  Google Scholar 

  • Swartz FJ, Bhatnagar KP (1981) Are CNS neurons polyploid? A critical analysis based upon cytophotometric study of the DNA content of cerebellar and olfactory bulbar neurons of the bat. Brain Res 208:267–281

    Article  CAS  PubMed  Google Scholar 

  • Swift H (1953) Quantitative aspects of nuclear nucleoproteins. Int Rev Cytol 2:1–76

    Article  CAS  Google Scholar 

  • Szaro BG, Tompkins R (1987) Effect of tetraploidy on dendritic branching in neurons and glial cells of the frog, Xenopus laevis. J Comp Neurol 258:304–316

    Article  CAS  PubMed  Google Scholar 

  • Tcherpakov M, Bronfman FC, Conticello SG, Vaskovsky A, Levy Z, Niinobe M, Yoshikawa K, Arenas E, Fainzilber M (2002) The p75 neurotrophin receptor interacts with multiple MAGE proteins. J Biol Chem 277:49101–49104

    Article  CAS  PubMed  Google Scholar 

  • Ullah Z, Lee CY, Lilly MA, DePamphilis ML (2009) Developmentally programmed endoreduplication in animals. Cell Cycle 8:1501–1509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vilar M, Murillo-Carretero M, Mira H, Magnusson K, Besset V, Ibáñez CF (2006) Bex1, a novel interactor of the p75 neurotrophin receptor, links neurotrophin signaling to the cell cycle. EMBO J 25:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Waid DK, McLoon SC (1995) Immediate differentiation of ganglion cells following mitosis in the developing retina. Neuron 14:117–124

    Article  CAS  PubMed  Google Scholar 

  • Weigmann K, Cohen SM, Lehner CF (1997) Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila Cdc2 kinase. Development 124:3555–3563

    CAS  PubMed  Google Scholar 

  • Weimann JM, Johansson CB, Trejo A, Blau HM (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5:959–966

    Article  CAS  PubMed  Google Scholar 

  • Weiss A, Herzig A, Jacobs H, Lehner CF (1998) Continuous Cyclin E expression inhibits progression through endoreduplication cycles in Drosophila. Curr Biol 8:239–242

    Article  CAS  PubMed  Google Scholar 

  • Yamagata M, Sanes JR (1995) Target-independent diversification and target-specific projection of chemically defined retinal ganglion cell subsets. Development 121:3763–3776

    CAS  PubMed  Google Scholar 

  • Yang Y, Geldmacher DS, Herrup K (2001) DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci 21:2661–2668

    CAS  PubMed  Google Scholar 

  • Yeo W, Gautier J (2004) Early neural cell death: dying to become neurons. Dev Biol 274:233–244

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Siedlak SL, Wang Y, Perry G, Castellani RJ, Cohen ML, Smith MA (2008) Neuronal binucleation in Alzheimer disease hippocampus. Neuropathol Appl Neurobiol 34:457–465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank E. Abanto, M.C. Hernández, N. Villarrubia, and P. Lastres for technical assistance, and MV Chao for the anti-p75NTR polyclonal antibody [9992]. The monoclonal antibody G3G4 specifically recognizing BrdU (S. Kaufman) was obtained from the Developmental Studies Hybridoma Bank (University of Iowa). This work was supported by grants from MICINN and FUNDALUCE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Frade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

López-Sánchez, N., Ovejero-Benito, M.C., Borreguero, L., Frade, J.M. (2011). Control of Neuronal Ploidy During Vertebrate Development. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_22

Download citation

Publish with us

Policies and ethics