Skip to main content

Intraplate Gabbroic Rock Debris Ejected from the Magma Chamber of the Macdonald Seamount (Austral Hotspot): Comparison with Other Provinces

  • Chapter
Oceanic Hotspots

Abstract

The Macdonald Seamount Fig. 10.1a is located at the tip of the Austral hotline (Johnson 1970, 1980; Talandier and Okal 1984). The activity of the Austral and Society hotspots has been closely monitored by the detection of seismic swarms recorded by the French Polynesian seismic network (“Réseau Sismique Polynésien”, RSP). Since the Austral Islands are too far away from the receiving stations, only ‘T’ waves have been detected from the Macdonald Seamount (Talandier and Okal 1984; see Sects. 2.4.1 and 2.4.2). This seamount is one of the most active submarine volcanoes in the world (Cheminée et al. 1991) and was first noticed after a strong seismic swarm was detected by the hydrophones of the Hawaiian Institute of Geophysics Network (Norris and Johnson 1969). A multibeam bathymetric survey (NO JEAN CHARCOT, FS SONNE and NO L’ATALANTE) of the most recent seamounts of the Society and the Austral hotspots was undertaken in 1986 and 1987. The edifices were also sampled, and several dredge hauls were undertaken on top of the Macdonald Seamount Fig. 10.1b. Related publications have mainly dealt with the morphology and the structure of the Society and Austral hotspots and the petrology of the volcanics (Stoffers et al. 1989; Sect. 5.3.1.1; Hekinian et al. 1991). Among the samples recovered from the Macdonald Seamount, highly vesicular pillow lavas, volcaniclastics and accidental rock debris were found. The gabbroic clasts were ejected during hydromagmatic explosive events nearly twenty years after the seamount was first discovered. Later, they were partially covered by basanite lapilli during further explosions (Sect. 5.3.1.1; Hekinian et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt JC, Anderson TF, Bonnell L, Muehlenbachs K (1989) Mineralogy, chemistry and stable isotopic composition of hydrothermaly altered sheetes dikes: ODP Hole 504B, Leg in, In: Becker K, Sakai H, et al, (eds) Proc ODP, Sci Results, vol 111, College Station TX (Ocean Drilling Program), pp 27–40

    Google Scholar 

  • Arai S, Matsukage K (1998) Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: A comparison between abyssal and alpine-type podiform chromitites. Lithos 43:1–14

    Google Scholar 

  • Bardintzeff JM, Bonin B, Brousse R, McBirney AR (1989) Plutonic complex of Tahiti-Nui Caldera (Pacific Ocean), Magmatic evolution of gabbroic and theralitic trends. International Geological Congress, Abstr 28(1):86

    Google Scholar 

  • Baten SK (1997) A petrologic study of the 1924 ejecta from Halemaumau Crater, Kilauea Caldera, Kilauea Volcano, Hawaii. In: Mendelson CV, Mankiewicz C (compiler) Keck Research Symposium in Geology 10:203–206

    Google Scholar 

  • Bideau D, Hébert R, Hekinian R, Cannat M (1991) Metamorphism of deep-seated rocks from the Garrett ultrafast transform (East Pacific Rise near 13°25’ S). J Geophys Res 96:10079–10099

    Google Scholar 

  • Binard N, Hekinian R, Cheminée J-L, Searle RC, Stoffers P (1991) Morphological and structural studies of the Society and Austral hotspot regions in the south pacific. Tectonophysics 186:293–312

    Google Scholar 

  • Binard N, Hekinian R, Stoffers P, Cheminée J-L (2004) South Pacific intraplate volcanism: Structure, morphology and style of eruption. Springer-Verlag, this volume

    Google Scholar 

  • Bonatti E, Honnorez J, Ferrara G (1971) I. Ultramafic rocks: Peridotites-gabbro-basalt complex from the equatorial Mid-Atlantic Ridge

    Google Scholar 

  • Bonatti E, Lawrence JR, Morandi N (1984) Serpentinization of ocean-floor peridotites: Temperature dependence on mineralogy and boron content. Earth Planet Sci Lett 70:88–94

    Google Scholar 

  • Bottinga Y, Javoy M (1973) Comments on oxygen isotope geothermometry. Earth Planet Sci Lett 20: 250–265

    Google Scholar 

  • Brooks CK (1976) The Fe2O3/FeO ratio of basalts analyses: An appeal for standardized procedure. Bull Geol Soc Den 25:117–120

    Google Scholar 

  • Brousse R, Richter de Forges B (1980) Laves alcalines et differenceées du volcan sousmarin Macdonald. CR Acad Sci Paris Ser D290:lOS5-lOS7

    Google Scholar 

  • Brown EH (1967) The greenschist facies in part of eastern Otago, New Zealand. Contrib Mineral Petrol 14:259–292

    Google Scholar 

  • Cann JR (1979) Metamorphism in the ocean crust. In: Talwani MHCG, Hayes DE (eds) Deep drilling results in the Atlantic Ocean: Ocean crust. Am Geophys Union Geodyn Ser, pp 230–238

    Google Scholar 

  • Cannat M, Bideau D, Bougault H (1992) Serpentinized peridotites and gabbros in the Mid Atlantic Ridge axial valley at 15°37’ N and 16°52’ N. Earth Planet Sci Lett 109:87–106

    Google Scholar 

  • Cannat M, Karson JA, Miller DJ, et al. (1995) Proc ODP, Init Repts, vol 153, College Station TX (Ocean Drilling Program)

    Google Scholar 

  • Carlson ET (1956) Hydrogarnet formation in the system lime-alumina-silica-water. J Res Natl Bur Stand 56:327–335

    Google Scholar 

  • Caruso LJ, Chernosky JV Jr (1979) The stability of lizardite. Can Mineral 17:757–769

    Google Scholar 

  • Cavarretta G, Gianelli G, Puxeddu M (1980) Hydrothermal metamorphism in the Larderello geothermal field. Geothermics 9:297–314

    Google Scholar 

  • Cheminée JL, Hekinian R, Talandier J, Albarède F, Devey CW, Francheteau J, Lancelot Y (1989) Geology of an active hot-spot: Teahitia-Mehetia region of the South Pacific. Marine Geophys Res 11:27–50

    Google Scholar 

  • Cheminée J-L, Stoffers P, McMurtry G, Richnow H, Puteanus D, Sedwick P (1991) Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount. Earth Planet Sci Lett 107:318–327

    Google Scholar 

  • Clague DA (1976) Petrology of basaltic and gabbroic rocks dredged from the Danger Island Troughs, Manihiki Plateau. In: Initial Repts DSDP 33; Honolulu, Hawaii to Papeete, Tahiti, pp 891–911

    Google Scholar 

  • Clague DA (1987) Hawaiian xenolith populations, magma supply rates, and development of magma chambers. Bull Volc 49(4):577–587

    Google Scholar 

  • Clague DA, Dalrymple GB (1988) Age and petrology of alkali postshield and rejuvenated-stage lava from Kauai, Hawaii. Contrib Mineral Petrol 99:202–218

    Google Scholar 

  • Coleman RG (1967) Low-temperature reaction zones and alpine ultramafic rocks of California, Oregon and Washington. US Geol Surv Bull 1247:49

    Google Scholar 

  • Constantin M (1999) Gabbroic intrusions and magmatic metasomatism in harzburgites from the Garrett transform: implications for the nature of the mantle-crust transition at fast-spreadind ridges. Contrib Mineral Petro 136:111–130

    Google Scholar 

  • Davis AS, Clague DA (1990) Gabbroic xenoliths from the northern Gorda Ridge; Implications for magma chamber processes under slow spreading centers. J Geophys Res 95(7):10885–10905

    Google Scholar 

  • Devey CW, Albarede F, Cheminée J-L, Michard A, Mühe R, Stoffers P (1990) Active submarine volcanism on the Society hotspot swell (West Pacific): A geochemical study. J Geophys Res 95:5049–5067

    Google Scholar 

  • Dick HJB, Natland JH, Miller DJ, et al. (1999) Proc. ODP, Init Repts, 176 (CD-ROM). Available from: Ocean Drilling Program, Texas A&M University, College Station, TX, USA

    Google Scholar 

  • Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, lldefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu Y, Robinson PT, Snow J, Stephen RA, Trimby PW, Wörm H, Yoshinobu A (2000) Along in situ section of the lower ocean crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179 (1):31–51

    Google Scholar 

  • Dixon JE, Clague DA, Eissen J-P (1986) Gabbroic xenoliths and host ferrobasalts from the southern Juan de Fuca Ridge. J Geophys Res 91(3):3795–3920

    Google Scholar 

  • Duncan RA, McDougall I (1976) Linear volcanism in French Polynesia. J Volcanol Geotherrn Res 1:197–227

    Google Scholar 

  • Elthon D (1981) Metamorphism in oceanic spreading centers. In: Emiliani C (ed) The sea, vol. 7: The oceanic lithosphere. Wiley, New York, pp 285–303

    Google Scholar 

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Fleet ME, Barnett RL (1978) AlIV/AlVI partitioning in calciferous amphiboles from the Frood Mine, Sudbury, Ontario. Can Mineral 16:527–532

    Google Scholar 

  • Fletcher JM, Stephen CJ, Petersen EU, Skerl L (1997) Greenschist facies hydrothermal alteration of oceanic gabbros: a case study of element mobility and reaction paths. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proc ODP, Sci Res, vol 153, pp 389–398

    Google Scholar 

  • Fodor RV, Galar P (1993) Hawaiian magma reservoir processes; interpretations from textures and mineral compositions for xenoliths of Mauna Kea Volcano. Abstr Prog, Geol Soc Am 25(6):444–445

    Google Scholar 

  • Fodor RV, Galar P (1997) A view into the subsurface of Mauna Kea Volcano, Hawaii; Crystallization processes interpreted through the petrology and petrography of gabbroic and ultramafic xenoliths. J Petrol 38(5):581–624

    Google Scholar 

  • Fodor RV, Moore RB (1994) Petrology of gabbroic xenoliths in 1960 Kilauea basalt; Crystalline remnants of prior (1955) magmatism. Bull Volc 56(1):62–74

    Google Scholar 

  • Fodor RV, Vandermeyden HJ (1987) Mauna Kea gabbroic xenoliths: cumulates from alkalic-basalt suite fractional crystallization. In Decker RW, Halbig JB, Hazlett RW, Okamura R, Wright TL (eds) Hawaii symposium on How volcanoes work; Abstract volume, p 78

    Google Scholar 

  • Fodor RV, Vandermeyden HJ (1988) Petrology of gabbroic xenoliths from Mauna Kea volcano, Hawaii. J Geophys Res 93:4435–4452

    Google Scholar 

  • Gaffney AM (1999) Crystallization and emplacement of Hawaiian tholeiitic-stage xenoliths. Abstr Prog, Geol Soc Am 31(7):180

    Google Scholar 

  • Govindaraju K (1982) Report (1967–1981) on four ANRT rock reference samples: diorite DR-N, serpentine UB-N, bauxite BX-N and disthene DT-N. Geostandards Newsletters 6(1):91–159

    Google Scholar 

  • Gillis K, Mével C, Allan J, et al. (1993) Proc ODP, Init Repts, vol 147, College Station TX (Ocean Drilling Program)

    Google Scholar 

  • Hébert R, Bideau D, Hekinian R (1983) Ultramafic and mafic rocks from the Garret Transform Fault near 13°30’S on the east Pacific Rise: Igenous petrology. Earth Planet Sci Lett 65:107–125

    Google Scholar 

  • Hekinian R, Hébert R, Maury RC, Berger ET (1985) Orthopyroxene-bearing gabbroic xenoliths in basalts from East Pacific Rise axis near 12°50’N. Bull Mineral 108(5):691–698

    Google Scholar 

  • Hekinian R, Bideau D, Stoffers P, Cheminée J-L, Mühe R, Puteanus D, Binard N (1991) Submarine intraplate volcanism in the South Pacific: Geological setting and petrology of the Society and the Austral Regions. J Geophvs Res 96:2109–2138

    Google Scholar 

  • Hekinian R, Bideau D, Francheteau J, Cheminée J-L, Armijo R, Lonsdale P, Blum N (1993a) Petrology of the East Pacific Rise crust and upper mantle exposed in the Hess Deep (eastern equatorial Pacific). J Geophys Res 98:8069–8094

    Google Scholar 

  • Hekinian R, Hoffert M, Larqué P, Cheminée JL, Stoffers P, Bideau D (1993b) Hydrothermal Fe and Si oxyhydroxides deposits from south pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions. Economic Geology 88:2099–2121

    Google Scholar 

  • Hekinian R, Juteau T, Gràcia E, Sichler B, Udintsev G, Apprioual R, Ligi M (2000) Submersible observations of Equatorial Atlantic mantle: The St. Paul Fracture Zone region 21:529–560

    Google Scholar 

  • Herron EM (1972) Seafloor spreading and the Cenozoic history of the east-central Pacific. Geol Soc Am Bull 83:1671–1692

    Google Scholar 

  • Hertogen J, Emmermann R, Robinson PT, Erzinger J (2002) Lithology, mineralogy, geochemistry of the lower ocean crust, ODP Hole 735B, Southwest Indian Ridge. In: Natland JH, Dick HJB, Miller DJ, Von Herzen RP (eds) Proc ODP, Sci Results, vol 76, 1–82 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA

    Google Scholar 

  • Holdaway MJ (1972) Thermal stability of Al-Fe epidote as a function of fO2 and Fe content. Contrib Mineral Petrol 37:307–340

    Google Scholar 

  • Honnorez J, Kirst P (1975) Petrology of rodingites from the equatorial mid-Atlantic fracture zone and their geotectonic significance. Contrib Mineral Petrol 49:233–257

    Google Scholar 

  • Hoover SR, Fodor RV (1997) Magma-reservoir crystallization processes: small-scale dikes in cumulate gabbros, Mauna Kea Volcano, Hawaii. Bull Volc 59(3):186–197

    Google Scholar 

  • Hoover S, Ginn F, Fodor RV (1996) Magma-reservoir crystallization processes; small-scale dikes in cumulate gabbro, Mauna Kea Volcano, Hawaii. Abst Prog, Geol Soc Am 28(7):289

    Google Scholar 

  • Johnson RH (1970) Active submarine volcanism in the Austral Islands. Science 167:977–979

    Google Scholar 

  • Johnson RH (1980) Seamounts in the Austral Islands region. National Geographic Society Res Reports 12:389–405

    Google Scholar 

  • Johnson RH, Malahoff A (1971) Relation of Macdonald volcano to migration of volcanism along the Austral chain. J Geophys Res 76:3282–3290

    Google Scholar 

  • Johnston AD, Stout JH, Murthy VR (1985)Geochemistry and origin of some unusually oxidized alkaline rocks from Kauai, Hawaii. J Volc Geotherm Res 25(3–4):225–248

    Google Scholar 

  • Jordahl K, Caress D, McNutt M, Bonneville A (2004) Seafloor topography and morphology of the Superswell Region. Springer-Verlag, this volume

    Google Scholar 

  • Karson JA, Cannat M, Miller DJ, et al. (1997) Proc ODP, Sci Results, vol 153, College Station TX (Ocean Drilling Program)

    Google Scholar 

  • Keith TEC, Mufflu LJP, Cremer N (1968) Hydrothermal epidote formed in the Salton Sea geothermal system, California. Am Mineral 53:1635–1644

    Google Scholar 

  • Kennedy AK, Kwon S-T, Frey FA, West HB (1991) The isotopic composition of postshield lavas from Mauna Kea Volcano, Hawaii. Earth Planet Sci Lett 103:339–353

    Google Scholar 

  • Kokelaar P (1986) Magma-water interactions in subaqueous and emergent basaltic volcanism. Bull Volcanol 48:275–289

    Google Scholar 

  • Klügel A, Schmincke H-U, White JDL, Hoernle KA (1999) Chronology and volcanology of the 1949 multi-vent rift-zone eruption on La Palma (Canary lslands). J Volc Geotherm Res 94: 1–4, 267–282

    Google Scholar 

  • Laschek D (1985) Geochemische Untersuchugen an Basalten vom Galapagos Spreading Center und vom East Pacific Rise. Doctoral dissertation, Fakultät für Bio-und Geowissenschaften der Universität (TH) Friderieiana Karisruhe (Germany), pp 1–133

    Google Scholar 

  • Le Bas MJ, Le Maître RW, Streckeisen A, Zanettin B (1986) A chemical cIassification of volcanic rocks based on total alkali-silica diagram. J Petrol 27(3):745–750

    Google Scholar 

  • Liou JG (1973) Synthesis and stability relations of epidote, Ca2 Al2 Si3 O12 (OH). J Petrol 14:381–413

    Google Scholar 

  • Liou JG, Ernst WG (1979) Oceanic ridge metamorphism of the East Taiwan ophiolite. Contrib Mineral Petrol 68:335–348

    Google Scholar 

  • Liou JG, Kuniyoshi S, Ito K (1974) Experimental studies of the phase relations between greenschist and amphibolite in a basaltic system. Am J Sci 274:613–632

    Google Scholar 

  • Melson WG, Thompson G (1970) Layered basic complex in oceanic crust, Romanche fracture, equatorial Atlantic Ocean. Science 168:817–820

    Google Scholar 

  • Mével C (1987) Evolution of oceanic gabbros from DSDP Leg82: influence of the fluid phase on metamorphic crystallizations. Earth Planet Sci Lett 83:67–79

    Google Scholar 

  • Mével C, Cannat M (1991) Lithospheric stretching and hydrothermal processes in oceanic gabbros from slow-spreading ridges. In: Peters T, Nicolas A, Coleman R.G. (eds) Ophiolite genesis and evolution of the oceanic lithosphere. Proceedings of the Ophiolite conference. Kluwer Acad, Dordrecht, Netheriands, pp 293–312

    Google Scholar 

  • Mével C, Stamoudi C (1996) Hydrothermal alteration of the upper-mantle section at Hess Deep. In: Mével C, Gillis KM, Allan JF, Meyer PS (eds) Proc ODP, Sci Results, vol 147, pp 293–309

    Google Scholar 

  • Mével C, Gillis KM, Allan JF, Meyer PS (1996) Proc ODP, Sci Results, vol 147, College Station TX (Ocean Drilling Program)

    Google Scholar 

  • Miyashiro A, Shido F (1980) Differentiation of gabbros in the Mid-Atlantic Ridge near 24° N. Geochem Journ 14:145–154

    Google Scholar 

  • Miyashiro A, Shido F, Ewing M (1971) Metamorphism in the Mid-Atlantic Ridge near 24° and 30° N. Phil Trans Roy Soc London 268:589–604

    Google Scholar 

  • Moody JB (1976) Serpentinization: A review. Lithos 9:125–138

    Google Scholar 

  • Mottl MJ, Holland HD (1978) Chemical exchange during hydrothermal alteration of basalt by seawater: I. Experimental results for major and minor components of seawater. Geochim Cosmochim Acta 42:1103–1115

    Google Scholar 

  • Natland JH, Dick HJB, Miller DJ, Von Herzen RP (2002) Proc ODP, Svi Res, vol 176 [CD-ROM and Online], available from: Ocean Drilling Program, Texas A&M University, College Station TX778459547, USA

    Google Scholar 

  • Nehlig P, Juteau T (1988) Flow porosities, permeabilitie s and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Samail ophiolite (Oman). Tectonophysics 151:199–221

    Google Scholar 

  • Neumann ER, Wulff-Pedersen E, Simonsen SL, Pearson NJ, Martí J, Mitjavila J (1999) Evidence for fractional crystallization of periodically refilled magma chambers in Tenerife, Canary Islands. J Petrol 40:1089–1123

    Google Scholar 

  • Neumann ER, Sorensen VB, Simonsen SL, Johnsen K (2000) Gabbroic xenoliths from La Palma, Tenerife and Lanzarote, Canary lslands: Evidence for reactions between mafic alkaline Canary lslands melts and old oceanic crust. J Volc Geotherm Res 103:1–4, 313–342

    Google Scholar 

  • Norris A, Johnson RH (1969) Submarine volcanic eruptions recently located in the Pacific by sofar hydrophones. J Geophys Res 74:650–664

    Google Scholar 

  • O’Brien JP, Rodgers KA (1973) Xonotlite and rodingites from Wairere, New Zealand. Mineral Mag 39(202):233–240

    Google Scholar 

  • Okubo PG, Benz HM, Chouet BA (1997) lmaging the crustal magma sources beneath Mauna Loa and Kilauea Volcanoes, Hawaii. US Geoll Survey, Hawaii National Park, Hl, United States, Geology (Boulder) 25(10):867–870

    Google Scholar 

  • Peck DL, Wright TL, Moore JG (1966) Crystallization of tholeiitic basalt in Alae Lava Lake, Hawaii. Bull Volcanol 29:629–655

    Google Scholar 

  • Pedersen RB, Malpas J, Falloon T (1996) Petrology and geochemistry of gabbroic and related rocks from Site 894, Hess Deep. In: Mével C, Gillis KM, Allan JF, Meyer PS (eds) Proc ODP, Sci Res, vol 147, College Station TX (Ocean Drilling Program), pp 3–19

    Google Scholar 

  • Perfit MR, Chadwick WW Jr (1998) Magmatism at mid-ocean ridges: Constraints from volcanological and geochemical investigations. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at mid-ocean ridges., Am Geophys Union, Geophys Monogr 106:59–115

    Google Scholar 

  • Pistorius CWST, Kennedy GC (1960) Stability relations of grossularite and hydrogrossularite at high temperatures and pressures. Am J Sci 258:247–257

    Google Scholar 

  • Ploshko VV, Bogdanov YA, Knyazeva DN (1969) Gabbro-amphibolite from the abyssal romance trench, Atlantic region. Doklady Akad Nauk SSSR 192:40–43

    Google Scholar 

  • Raase P (1974) Al and Ti contents of hornblende; indicators of pressure and temperature of regional metamorphism. Contrib Mineral Petrol 45:231–236

    Google Scholar 

  • Raith M (1976) The Al-Fe(III) epidote miscibility gap in a metamorphic profile through the penninic series of the Tawn Window, Austria. Contrib Mineral Petrol 57:99–117

    Google Scholar 

  • Reiners PW, Nelson BK, Izuka SK (1999) Structural and petrologic evolution of the Lihue Basin and eastern Kauai, Hawaii. Geol Soc Am Bull 111(5):674–685

    Google Scholar 

  • Robinson PT, Von Herzen R, et aI. (1989) Proc ODP, Init Repts, vol 118, College Station TX (Ocean Drilling Program)

    Google Scholar 

  • Sailor RV, Okal EA (1983) Applications of seasat altimeter data in seismotectonic studies of the south-central Pacific. J Geophys Res 88:1572–1580

    Google Scholar 

  • Schmincke H-U, Klügel A, Hansteen TH, Hoernle K, van den Bogaard P (1998) Samples from the Jurassic ocean crust beneath Gran Canaria, La Palma and Lanzarote (Canary Islands). Earth Planet Sci Lett 163:343–360

    Google Scholar 

  • Seifert K, Gibson I, Weis D, Brunotte D (1996) Geochemistry of metamorphosed cumulate gabbros from Hole 900A, Iberia Abyssal Plain. In: Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Poc ODP, Sci Res, vol 149, pp 471–488

    Google Scholar 

  • Seifert K, Chang C-W, Brunotte D (1997) Evidence from Ocean Drilling Program Leg 149 mafic igneous rocks for oceanic crust in Iberia Abyssal Plain ocean-continent transition zone. J Geophys Res 102:7915–7928

    Google Scholar 

  • Sigwaldason GE (1962) Epidote and related minerals in two deep geothermal drill holes, Reykjavick and Hveragerdi, Iceland. US Geol Surv Prof Pap 450E:77–84

    Google Scholar 

  • Simonov VA, Kolobov VYu, Peyve AA (1999) Petrology and geochemistry of geodynamic processes in central Atlantic. In: Dobretson L (ed) SPC UIGGM, Siberian branch of RAS, Novosibirsk, pp 75–77, in Russian

    Google Scholar 

  • Steiner A (1966) On the occurrence of hydrothermal epidote at Wairakei, New Zealand. IZV Akad Nauk USSR, Geol Series 2:167

    Google Scholar 

  • Stewart LJ, Brunstad KA (1999) Scanning electron microscope study of xenoliths from Mauna Kea Volcano, Hawaii. Abs Prog, Geol Soc Am 3(7):166

    Google Scholar 

  • Stoffers P, Botz R, Cheminée J-L, Dewey CW, Froger V, Glasby GP, Hartmann M, Hekinian R, Kögler F, Laschek D, Larqué P, Michaelis W, Mühe RK, Puteanus D, Richnow HH (1989) Geology of the Macdonald “hot-spot”: Recent submarine eruptions in the South Pacific. Mar Geophys Res 11: 101–112

    Google Scholar 

  • Sushchevskaya NM, Bonatti E, Peive AA, Kamenetskii VS, Belyatskii BV, Tsekhonya TI, Kononkova NN (2002) Heterogeneity of rift magmatism in the equatorial province of the Mid-Atlantic Ridge (15° N to 3° S). Geochem Intern 40(1):26–50

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Pub London 42:313–345

    Google Scholar 

  • Talandier J (2003) Seismicity of the Society and Austral hot spots in the South Pacific. Seismic detection, monitoring and interpretation of underwater volcanism. This volume

    Google Scholar 

  • Talandier J, Okal EA (1983) The volcanoseismic swarms of 1981–1983 in the Tahiti-Mehetia area. J Geophys Res 89:U216–U234

    Google Scholar 

  • Talandier J, Okal EA (1984) New survey of Macdonald eamount, South central Pacific, following volcanoseismic activity, 1977–1983. Geophys Res Lett 1:813–816

    Google Scholar 

  • Thieâen O, Schmit M, Botz R, Stoffers P (2003) Biogenic methane formation in hotspot. This volume

    Google Scholar 

  • Upton BGJ, Semet MP, Joron J-L (2000) Cumulate clasts in the Bellecombe ash member, Piton de la Fournaise, Réunion Island, and their bearing on cumulative processes in the petrogenesis of the réunion lavas. J Volc Geotherm Res 104:297–318

    Google Scholar 

  • Vogt PR, Smoot NC (1984) The Geisha Guyots: Multibeam bathymetry and morphological interpretation. J Geophys Res 89:11085–11107

    Google Scholar 

  • Von Herzen RP, Robinson PT, et al. (1991) Proc ODP, Sci Rses, vol 118, College Station, TX (Ocean Drilling Program)

    Google Scholar 

  • Wenner DB, Taylor HP (1971) Temperature of serpentinization of ultramafic rocks based on 18O/16O fractionation between co-existing serpentine and magnetite. Contrib Mineral Petrol 32:165–185

    Google Scholar 

  • Werner C-D (1997) Data report: Geochemistry of rocks and minerals of the gabbro complex from the MARK area. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds), Proc ODP, Sci Res, vol 153, College Station TX (Ocean Drilling Program), pp 491–504

    Google Scholar 

  • White JDL, Schminkce HU (1999) Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands). J Volc Geotherm Res 94:203–304

    Google Scholar 

  • Yoder HS (1950) Stability relations of grossularite. J GeoI 58:221–253

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bideau, D., Hekinian, R. (2004). Intraplate Gabbroic Rock Debris Ejected from the Magma Chamber of the Macdonald Seamount (Austral Hotspot): Comparison with Other Provinces. In: Hekinian, R., Cheminée, JL., Stoffers, P. (eds) Oceanic Hotspots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18782-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18782-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62290-8

  • Online ISBN: 978-3-642-18782-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics