Skip to main content

Modeling of Species and Charge Transport in Li–Ion Batteries Based on Non-equilibrium Thermodynamics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6046))

Abstract

In order to improve the design of Li ion batteries the complex interplay of various physical phenomena in the active particles of the electrodes and in the electrolyte has to be balanced. The separate transport phenomena in the electrolyte and in the active particle as well as their coupling due to the electrochemical reactions at the interfaces between the electrode particles and the electrolyte will influence the performance and the lifetime of a battery. Any modeling of the complex phenomena during the usage of a battery has therefore to be based on sound physical and chemical principles in order to allow for reliable predictions for the response of the battery to changing load conditions. We will present a modeling approach for the transport processes in the electrolyte and the electrodes based on non-equilibrium thermodynamics and transport theory. The assumption of local charge neutrality, which is known to be valid in concentrated electrolytes, is explicitly used to identify the independent thermodynamic variables and fluxes. The theory guarantees strictly positive entropy production. Differences to other theories will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuller, T.F., Doyle, M., Newman, J.: Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141, 1–10 (1994)

    Article  Google Scholar 

  2. Newman, J., Thomas-Alyea, K.E.: Electrochemical Systems. Wiley, Chichester (2004)

    Google Scholar 

  3. Thomas, K.E., Newman, J., Darling, R.M.: Mathematical modeling of lithium batteries. In: Schalkwijk, W.A., Scrosati, B. (eds.) Advances in Lithium-Ion Batteries, pp. 345–392. Kluwer, Dordrecht (2002)

    Chapter  Google Scholar 

  4. Botte, G.G., Subramanian, V.R., White, R.E.: Mathematical modeling of secondary lithium batteries. Electrochimica Acta 45, 2595–2609 (2000)

    Article  Google Scholar 

  5. Danilov, D., Notten, P.H.L.: Mathematical modelling of ionic transport in the electrolyte of li-ion batteries. Electrochimica Acta 53, 5569–5578 (2008)

    Article  Google Scholar 

  6. Olesen, L.H., Bazant, M.Z., Bruus, H.: Strongly nonlinear dynamics of electrolytes in large ac voltages. arXiv:0908.3501 (2009)

    Google Scholar 

  7. Wang, C.Y., Gu, W.B., Liaw, B.Y.: Micro-macroscopic coupled modeling of batteries and fuel cells. i. model development. J. Electrochem. Soc. 145, 3407–3417 (1998)

    Article  Google Scholar 

  8. Wang, C.W., Sastry, A.M.: Mesoscale modeling of li-ion polymer cell. J. Electrochem. Soc. 154, A1035–A1047 (2007)

    Google Scholar 

  9. Zausch, J., Latz, A., Schmidt, S., Less, G.B., Seo, J.H., Han, S., Sastry, A.M.: Micro-scale modeling of li-ion batteries; parameterization and validation (2010) (to be published)

    Google Scholar 

  10. Vetter, J., Novak, P., Wagner, M.R., Veit, C., Möller, K.-C., Besenhard, J.O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., Hammouche, A.: Ageing mechanisms in lithium-ion batteries. J. Pow. Sources 147, 269–281 (2005)

    Article  Google Scholar 

  11. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continous Media. Pergamon, Oxford (1984)

    Google Scholar 

  12. de Groot, S., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)

    MATH  Google Scholar 

  13. Latz, A., Zausch, J.: Thermodynamic consistent transport theory of li ion batteries (2010, in print)

    Google Scholar 

  14. Liu, M.: Hydrodynamic theory of electromagnetic fields in continous media. Phys. Rev. Lett. 70, 3580–3583 (1993)

    Article  Google Scholar 

  15. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids. Academic Press, London (1986)

    MATH  Google Scholar 

  16. Aouizerat-Elarby, A., Dez, H., Prevel, B., Jal, J., Bert, J., Dupuy-Philon, J.: Diffusion processes in LiCl, R H2O solutions. Journal of Molecular Liquids 84(3), 289–299 (2000)

    Article  Google Scholar 

  17. Doyle, M., Newman, J., Gozdz, A.S., Schmutz, C.N., Tarascon, J.M.: Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143, 1890–1903 (1996)

    Article  Google Scholar 

  18. Latz, A., Zausch, J.: Mesoscopic modeling and simulation of charge and ion transport in li ion battery cells. In: Proceedings Dechema Conference on Materials for Energy (2010)

    Google Scholar 

  19. Popov, P., Vutov, Y., Margenov, S., Iliev, O.: Finite volume discretization of nonlinear diffusion in li-ion batteries. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) Numerical Methods and Applications. LNCS, vol. 6064. Springer, Heidelberg (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Latz, A., Zausch, J., Iliev, O. (2011). Modeling of Species and Charge Transport in Li–Ion Batteries Based on Non-equilibrium Thermodynamics. In: Dimov, I., Dimova, S., Kolkovska, N. (eds) Numerical Methods and Applications. NMA 2010. Lecture Notes in Computer Science, vol 6046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18466-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18466-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18465-9

  • Online ISBN: 978-3-642-18466-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics