Skip to main content

k  +  Decision Trees

(Extended Abstract)

  • Conference paper
Book cover Algorithms for Sensor Systems (ALGOSENSORS 2010)

Abstract

Consider a wireless sensor network in which each sensor has a bit of information. Suppose all sensors with the bit 1 broadcast this fact to a basestation. If zero or one sensors broadcast, the basestation can detect this fact. If two or more sensors broadcast, the basestation can only detect that there is a ”collision.” Although collisions may seem to be a nuisance, they can in some cases help the basestation compute an aggregate function of the sensors’ data.

Motivated by this scenario, we study a new model of computation for boolean functions: the 2  +   decision tree. This model is an augmentation of the standard decision tree model: now each internal node queries an arbitrary set of literals and branches on whether 0, 1, or at least 2 of the literals are true. This model was suggested in a work of Ben-Asher and Newman but does not seem to have been studied previously.

Our main result shows that 2 +  decision trees can ”count” rather effectively. Specifically, we show that zero-error 2 +  decision trees can compute the threshold-of-t symmetric function with O(t) expected queries (and that Ω(t) is a lower bound even for two-sided error 2 +  decision trees). Interestingly, this feature is not shared by 1 +  decision trees. Our result implies that the natural generalization to k  +  decision trees does not give much more power than 2 +  decision trees. We also prove a lower bound of \(\tilde{\Omega}(t) \cdot \log(n/t)\) for the deterministic 2 +  complexity of the threshold-of-t function, demonstrating that the randomized 2 +  complexity can in some cases be unboundedly better than deterministic 2 +  complexity.

Finally, we generalize the above results to arbitrary symmetric functions, and we discuss the relationship between k  +  decision trees and other complexity notions such as decision tree rank and communication complexity.

James Aspnes is supported in part by NSF grant CCF-0916389. Murat Demirbas’ work was partially supported by NSF Career award #0747209. Ryan O’Donnell is supported in part by NSF grants CCF-0747250 and CCF-0915893, a Sloan fellowship, and an Okawa fellowship. Atri Rudra and Steve Uurtamo are supported in part by NSF CAREER grant CCF-0844796.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M.: Combinatorial Search. Wiley-Teubner Series in Computer Science (1988)

    Google Scholar 

  2. Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., Mittal, V., Cao, H., Demirbas, M., Gouda, M., Choi, Y.R., Herman, T., Kulkarni, S.S., Arumugam, U., Nesterenko, M., Vora, A., Miyashita, M.: A line in the sand: A wireless sensor network for target detection, classification, and tracking. Computer Networks (Elsevier) 46(5), 605–634 (2004)

    Article  Google Scholar 

  3. Ben-Asher, Y., Newman, I.: Decision trees with boolean threshold queries. J. Comput. Syst. Sci. 51(3), 495–502 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Or, M.: Lower bounds for algebraic computation trees. In: STOC 1983, pp. 80–86 (1983)

    Google Scholar 

  5. Bshouty, N.H.: A subexponential exact learning algorithm for DNF using equivalence queries. Information Processing Letters” 59(3), 37–39 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: A survey. Theoretical Computer Science 288(1), 21–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chockler, G., Demirbas, M., Gilbert, S., Lynch, N.A., Newport, C.C., Nolte, T.: Consensus and collision detectors in radio networks. Distributed Computing 21(1), 55–84 (2008)

    Article  MATH  Google Scholar 

  8. Demirbas, M., Soysal, O., Hussain, M.: Singlehop collaborative feedback primitives for wireless sensor networks. In: INFOCOM, pp. 2047–2055 (2008)

    Google Scholar 

  9. Dobkin, D., Lipton, R.J.: Multidimensional searching problems. SIAM Journal on Computing 5(2), 181–186 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  11. Dutta, P., Musaloiu-e, R., Stoica, I., Terzis, A.: Wireless ack collisions not considered harmful. In: HotNets-VII: The Seventh Workshop on Hot Topics in Networks (2008)

    Google Scholar 

  12. Ehrenfeucht, A., Haussler, D.: Learning decision trees from random examples. Information and Computation 82(3), 231–246 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goodrich, M.T., Hirschberg, D.S.: Efficient parallel algorithms for dead sensor diagnosis and multiple access channels. In: SPAA 2006: Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms and architectures, pp. 118–127. ACM, New York (2006)

    Chapter  Google Scholar 

  14. Hamza, K.: The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions. Statistics and Probability Letters 23(1), 21–25 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jurdzinski, T., Kutylowski, M., Zatopianski, J.: Energy-efficient size approximation of radio networks with no collision detection. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 279–289. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier spectrum. SIAM Journal on Computing 22(6), 1331–1348 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  18. Moran, S., Snir, M., Manber, U.: Applications of ramsey’s theorem to decision tree complexity. J. ACM 32(4), 938–949 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nisan, N.: CREW PRAMs and decision trees. SIAM Journal on Computing 20(6), 999–1007 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Paturi, R.: On the degree of polynomials that approximate symmetric boolean functions (preliminary version). In: STOC 1992, pp. 468–474 (1992)

    Google Scholar 

  21. Rosenberg, A.L.: On the time required to recognize properties of graphs: a problem. SIGACT News 5(4), 15–16 (1973)

    Article  Google Scholar 

  22. Yao, A.C.C.: Monotone bipartite graph properties are evasive. SIAM Journal on Computing 17(3), 517–520 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aspnes, J., Blais, E., Demirbas, M., O’Donnell, R., Rudra, A., Uurtamo, S. (2010). k  +  Decision Trees. In: Scheideler, C. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2010. Lecture Notes in Computer Science, vol 6451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16988-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16988-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16987-8

  • Online ISBN: 978-3-642-16988-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics