Skip to main content

Multifunctional and Smart Carbon Nanotube Reinforced Cement-Based Materials

  • Chapter
Nanotechnology in Civil Infrastructure

Abstract

Nanotechnology has changed and will continue to change our vision, expectations and abilities to control the material world. These developments will definitely affect the field of construction and construction materials. Carbon nanotubes (CNTs) are considered to be one of the most beneficial nano-reinforcement materials. The combination of high aspect ratio, small size, low density, and unique physical and chemical properties make them perfect candidates as reinforcements in multifunctional and smart cement-based materials. Here, we review recent progress and advances of CNTs reinforced cement-based materials, with attention to their fabrication methods, mechanical properties, electrical and piezoresistive properties, thermal conductive and damping properties, and potential structural applications. Future challenges for the development and deployment of multifunctional and smart CNTs reinforced cement-based materials and structures are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitcin, P.C.: Cements of yesterday and today Concrete of tomorrow. Cement and Concrete Research 30, 1349–1359 (2000)

    Article  Google Scholar 

  • Azhari, F.: Cement-based sensors for structural health monitoring. Dissertation for the Master Degree of Applied Science. University of British Columbia, Vancouver, Canada (2008)

    Google Scholar 

  • Banthia, N.: Fiber reinforced concrete for sustainable and intelligent infra structure. In: First International Conference on Sustainable Built Environment Infrastructures in Developing Countries, Algeria, pp. 337–350 (2009)

    Google Scholar 

  • Blanchet, G.B., Subramoney, S., Bailey, R.K., Jaycox, G.D., Nuckolls, C.: Sel-assembled three-dimensional conducting network of single-wall carbon nanotubes. Applied Physics Letters 85, 828–830 (2004)

    Article  Google Scholar 

  • Branner, M., Kavi, A.M., Li, M.G.: Carbon nanotube-fiber reinforced cement and concrete. Patent US 20081034942A1 (2008)

    Google Scholar 

  • Cao, J., Wang, Q., Dai, H.: Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Physical Review Letters 90, 157601–157604 (2003)

    Article  Google Scholar 

  • Chaipanich, A., Nochaiya, T., Wongkeo, W., Torkittikul, P.: Compressive strength and microstructure of carbon nanotubes-fly ash cement composites. Materials Science and Engineering A 527(4-5), 1063–1067 (2010)

    Google Scholar 

  • Chen, C.W., Lee, M.H., Clark, S.J.: Gas molecule effects on field emission properties of single-walled carbon nanotube. Diamond and Related Materials 13, 1306–1313 (2004)

    Article  Google Scholar 

  • Chen, K., Xiong, C.X., Li, L.B., Zhou, L., Lei, Y., Dong, L.J.: Conductive mechanism of antistatic poly (ethylene terephthalate)/ZnOw composites. Polymer Composites 30, 226–231 (2008)

    Article  Google Scholar 

  • Cheng, Y., Zhou, O.: Electron field emission from carbon nanotubes. Comptes Rendus Physique 4, 1021–1033 (2003)

    Article  Google Scholar 

  • Chung, D.D.L.: Piezoresistive cement-based materials for strain sensing. Journal of Intelligent Material Systems and Structures 13, 599–609 (2002)

    Article  Google Scholar 

  • Cwirzen, A., Habermehl-Cwirzen, K., Penttala, V.: Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Advances in Cement Research 20, 65–73 (2008)

    Article  Google Scholar 

  • Cwirzen, A., Habermehl-Cwirzen, K., Nasibulina, L.I., Shandakov, S.D., Nasibulin, A.G., Kauppinen, E.I., Mudimela, P.R., Penttala, V.: CHH Cement Composite. Nanotechnology in Construction 3 (2009)

    Google Scholar 

  • De Backer, H., De Corte, W., Van Bogaert, P.: A case study on strain gauge measurements on large post-tensioned concrete beams of a railway support structure. Insight: Non-Destructive Testing and Condition Monitoring 45-12, 822–826 (2003)

    Article  Google Scholar 

  • De Ibarra, Y.S., Gaitero, J.J., Campillo, I.: Atomic force microscopy and anoindentation of cement pastes with nanotube dispersions. Physica Status Solidi A 203, 1076–1081 (2006)

    Article  Google Scholar 

  • Dresselhaus, M.S., Dresselhaus, G., Avouris, P.: Carbon nanotubes: synthesis, structure, properties and applications. Springer, Heidelberg (2000)

    Google Scholar 

  • Dunens, O.M., MacKenzie, K.J., Harris, A.T.: Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts. Environmental Science and Technology 43, 7889–7894 (2009)

    Article  Google Scholar 

  • Gibson, R.F., Yau, A.: Complex moduli of chopped fiber and continuous fiber composites: comparison of measurements with estimated bounds. Journal of Composite Materials 14, 155–167 (1980)

    Article  Google Scholar 

  • Girifalco, L.A., Hodak, M., Lee, R.S.: Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical Review B 62, 13104 (2000)

    Article  Google Scholar 

  • Grunlan, J.C., Mehrabi, A.R., Bannon, M.V., Bahr, J.L.: Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Advanced Materials 16, 150–153 (2004)

    Article  Google Scholar 

  • Grujicic, M., Gao, G., Gersten, B.: Enhancement of field emission in carbon nanotubes through adsorption of polar molecules. Applied Surface Science 206, 167–177 (2003)

    Article  Google Scholar 

  • Han, B.G., Guan, X.C., Ou, J.P.: Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors. Sensors and Actuators: A physical 135, 360–369 (2007)

    Article  Google Scholar 

  • Han, B.G., Ou, J.P.: Embedded piezoresistive cement-based stress/strain sensor. Sensors and Actuators: A physical 138, 294–298 (2007)

    Article  Google Scholar 

  • Han, B.G., Ou, J.P.: The humidity sensing property of cements with added carbon. New Carbon Materials 23, 382–384 (2008)

    Article  Google Scholar 

  • Han, B.G., Yu, X., Kwon, E.: A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology 20, 445–501 (2009)

    Google Scholar 

  • Han, B.G., Yu, X., Ou, J.P.: Dispersion of carbon nanotubes in cement-based composites and its influence on the piezoresistivities of composites. In: ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SAMASIS 2009), Oxnard (2009)

    Google Scholar 

  • Han, B.G., Yu, Y., Han, B.Z., Ou, J.P.: Development of a wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement-based sensors. Sensors and Actuators: A physical 147, 536–543 (2008)

    Article  Google Scholar 

  • Han, B.G., Yu, X., Kwon, E., Ou, J.P.: Piezoresistive MWNTs filled cement-based composites. Sensor Letters 8, 344–348 (2010)

    Article  Google Scholar 

  • Han, B.G., Yu, X., Ou, J.P.: Effect of water content on the piezoresistivity of CNTs/cement composites. Journal of Materials Science (2010), doi:10.1007/s10853-010-4414-7

    Google Scholar 

  • Hiroshi, I., Yoshiki, O., Hitoshi, K.: Experimental study on structural health monitoring of RC columns using self-diagnosis materials. In: Proceedings of SPIE, vol. 5391, pp. 609–617 (2004)

    Google Scholar 

  • Hou, T.C., Lynch, J.P.: Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components. In: Proceedings of SPIE, vol. 5765, pp. 7–10 (2005)

    Google Scholar 

  • Hu, C.Y., Xu, Y.J., Duo, S.W., Zhang, R.F., Li, M.S.: Non-covalent functionalization of carbon nanotubes with surfactants and polymers. Journal of the Chinese Chemical Society 56, 234–239 (2009)

    Google Scholar 

  • Iijima, S.: Helical microtubes of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  • Kakade, B.A., Pillai, V.K.: Tuning the wetting properties of multiwalled carbon nanotubes by surface functionalization. Journal of Physical Chemistry 112, 3183–3186 (2008)

    Google Scholar 

  • Khare, R., Bose, S.: Carbon Nanotube Based Composites- A Review. Journal of Minerals and Materials Characterization and Engineering 4, 31–46 (2005)

    Google Scholar 

  • Kim, Y.J., Shin, T.S., Choi, H.D., Kwon, J.H., Chung, Y.C., Yoon, H.G.: Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43, 23–30 (2005)

    Article  Google Scholar 

  • Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, P.S.: Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research (2010), doi:10.1016/j.cemconres2010.02.015

    Google Scholar 

  • Leng, J.S., Winter, D., Barnes, R.A., Mays, G.C., Fernando, G.F.: Structural health monitor-ing of concrete cylinders using protected fiber optic sensors. Smart Materials and Structures 15(2), 302–308 (2006)

    Article  Google Scholar 

  • Li, C.Y., Chou, T.W.: Modeling of damage sensing in fiber composites using carbon nanotube networks. Composites Science and Technology 68, 3373–3379 (2008)

    Article  Google Scholar 

  • Li, G.Y., Wang, P.M., Zhao, X.H.: Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43, 1239–1245 (2005)

    Article  Google Scholar 

  • Li, G.Y., Wang, P.M., Zhao, X.H.: Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement and Concrete Composites 29, 377–382 (2007)

    Article  Google Scholar 

  • Li, H., Liu, Z.Q., Li, Z.W., Ou, J.P.: Study on damage emergency repair performance of a simple beam embedded with shape memory alloys. Advances in Structural Engineering 7(6), 495–501 (2004)

    Article  Google Scholar 

  • Lourie, O., Cox, D.E., Wagner, H.D.: Buckling and collapse of embedded carbon nanotubes. Physical Review Letter 81, 16–38 (1998)

    Google Scholar 

  • Lu, J.R., Chen, X.F., Lu, W., Chen, G.H.: The piezoresistive behaviors of polyethylene/foliated graphite nanocomposites. European Polymer Journal 42, 1015–1021 (2006)

    Article  Google Scholar 

  • Ludvig, P., Ladeira, L.O., Calixto, J.M., Gaspar, I.C.P., Melo, V.S.: In-situ synthesis of multiwall carbon nanotubes on portland cement clinker. In: 11th International Conference on Advanced Materials, Rio de Janeiro, Brazil (2009)

    Google Scholar 

  • Luo, J.L.: Fabrication and functional properties of multi-walled carbon nanotube/cement composites. Dissertation for the Doctoral Degree in Engineering, Harbin Institute of Technology, Harbin, China (2009)

    Google Scholar 

  • Luo, J.L., Duan, Z.D., Li, H.: The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Physica Status Solidi 206(12), 2783–2790 (2009)

    Google Scholar 

  • Makar, J.M., Beaudoin, J.J.: Carbon nanotubes and their application in the construction industry. In: Proceedings of the 1st International Symposium on Nanotechnology in Construction, Paisley, p. 331 (2003)

    Google Scholar 

  • Makar, J.M., Chan, G.W.: Growth of cement hydration products on single walled carbon nanotubes. Journal of the American Ceramic Society 92, 1303–1310 (2009)

    Article  Google Scholar 

  • Makar, J., Margeson, J., Luh, J.: Carbon nanotube/cement composites-early results and potential applications. In: Third International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, pp. 1–10 (2005)

    Google Scholar 

  • Mather, B.: Concrete durability. Cement and Concrete Composites 26, 3–4 (2004)

    Article  Google Scholar 

  • Meyyappan, M.: Carbon nanotubes science and applications. CRC Press, Boca Raton (2005)

    Google Scholar 

  • Mclean, D., Read, B.E.: Storage and loss moduli in discontinuous composites. Journal of Material Science 10, 481–492 (1975)

    Article  Google Scholar 

  • Musso, S., Tulliani, J.M., Ferro, G., Tagliaferro, A.: Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Composites Science and Technology 69, 1985–1990 (2009)

    Article  Google Scholar 

  • Nasibulin, A.G., Shandakov, S.D., Nasibulina, L.I., Cwirzen, A., Mudimela, P.R., Habermehl-Cwirzen, K., Grishin, D.A., Gavrilov, Y.V., Malm, J.E.M., Tapper, U., Tian, Y., Penttala, V., Karppinen, M.J., Kauppinen, E.I.: A novel cement-based hybrid material. New Journal of Physics 11, 023013 (2009)

    Article  Google Scholar 

  • Ou, J.P., Han, B.G.: Piezoresistive cement-based strain sensors and self-sensing concrete components. Journal of Intelligent Material Systems and Structures 20, 329–336 (2009)

    Google Scholar 

  • Odom, T.W., Huang, J.L., Kim, P., Lieber, C.M.: Structure and electronic properties of carbon nanotubes. Journal of Physical Chemistry B 104, 27–94 (2000)

    Article  Google Scholar 

  • Park, S., Ahmad, S., Yun, C.B., Roh, Y.: Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Experimental Mechanic 46(5), 609–618 (2006)

    Article  Google Scholar 

  • Pushparaj, V.L., Nalamasu, O., Manoocher Birang, M.: Carbon nanotube-based load cells. Patent US2010/0050779 A1 (2010)

    Google Scholar 

  • Qiao, L., Zheng, W.T., Wen, Q.B., Jiang, Q.: First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes. Nanotechnology 18, 155–707 (2007)

    Google Scholar 

  • Raki, L., Beaudoin, J., Alizadeh, R., Makar, J., Sato, T.: Cement and concrete nanoscience and nanotechnology. Materials 3, 918–942 (2010)

    Article  Google Scholar 

  • Saad Morsy, M.: Effect of temperature on electrical conductivity of blended cement pastes. Cement and Concrete Research 29, 603–606 (1999)

    Article  Google Scholar 

  • Saafi, M.: Wireless and embedded carbon nanotube networks for damage detection in concrete structures. Nanotechnology 20, 395–502 (2009)

    Article  Google Scholar 

  • Sanchez, F.: Carbon nanofibre/cement composites: challenges and promises as structural materials. International Journal of Materials and Structural Integrity 3(2/3), 217–226 (2009)

    Article  Google Scholar 

  • Shah, S.P., Konsta-Gdoutos, M.S., Metexa, Z.S.: Highly-dispersed carbon nanotube-reinforced cement-based materials. Patent US 20090229494A1 (2009)

    Google Scholar 

  • Slosberg, M., Kari, L.: Testing of nonlinear interaction effects of sinusoidal and noise excitation on rubber isolator stiffness. Polymer Testing 22, 343–351 (2003)

    Article  Google Scholar 

  • Terrones, M.: Science and technology of the twenty-first century: synthesis, propertypes, and applications of carbon nanotubes. Annual Review of Materials Research 33, 419 (2003)

    Article  Google Scholar 

  • Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., et al.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996)

    Article  Google Scholar 

  • Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C.S., Tang, M., Vaisman, L., Wagner, H.D., Marom, G.: The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science 128-130, 37–46 (2006)

    Article  Google Scholar 

  • Tumidajski, P.J.: Electrical conductivity of Portland cement mortars. Cement and Concrete Research 26, 529–543 (1996)

    Article  Google Scholar 

  • Veedu, V.P.: Multifunctional cementitious nanocomposite material and methods of making the same. Patent: US 7666327 B1 (2010)

    Google Scholar 

  • Wang, L.H., Ding, T.H., Wang, P.: Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon 47, 3151–3157 (2009)

    Article  Google Scholar 

  • Wansom, S., Kidner, N.J., Woo, L.Y., Mason, T.O.: AC-impedance response of multi-walled carbon nanotube/cement composites. Cement and Concrete Composites 28, 509–519 (2006)

    Article  Google Scholar 

  • Wu, S.Y.: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000)

    Article  Google Scholar 

  • Yakovlev, G., KerienÄ—, J., Gailius, A., GirnienÄ—, I.: Cement based foam concrete reinforced by carbon nanotubes. Materials Science 12(2), 147–151 (2006)

    Google Scholar 

  • Yu, X., Kwon, E.: Carbon-nanotube/cement composite with piezoresistive property. Smart Materials and Structures 18, 055010 (2009)

    Article  Google Scholar 

  • Zhou, X., Shin, E., Wang, K.W., Bakis, C.E.: Interfacial damping characteristics of carbon nanotube-based composites. Composites Science and Technology 64, 2425–2437 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Han, B., Yu, X., Ou, J. (2011). Multifunctional and Smart Carbon Nanotube Reinforced Cement-Based Materials. In: Gopalakrishnan, K., Birgisson, B., Taylor, P., Attoh-Okine, N.O. (eds) Nanotechnology in Civil Infrastructure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16657-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16657-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16656-3

  • Online ISBN: 978-3-642-16657-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics