Skip to main content

Adapted Transfer of Distance Measures for Quantitative Structure-Activity Relationships

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6332))

Abstract

Quantitative structure-activity relationships (QSARs) are regression models relating chemical structure to biological activity. Such models allow to make predictions for toxicologically or pharmacologically relevant endpoints, which constitute the target outcomes of trials or experiments. The task is often tackled by instance-based methods (like k-nearest neighbors), which are all based on the notion of chemical (dis-)similarity. Our starting point is the observation by Raymond and Willett that the two big families of chemical distance measures, fingerprint-based and maximum common subgaph based measures, provide orthogonal information about chemical similarity. The paper presents a novel method for finding suitable combinations of them, called adapted transfer, which adapts a distance measure learned on another, related dataset to a given dataset. Adapted transfer thus combines distance learning and transfer learning in a novel manner. In a set of experiments, we compare adapted transfer with distance learning on the target dataset itself and inductive transfer without adaptations. In our experiments, we visualize the performance of the methods by learning curves (i.e., depending on training set size) and present a quantitative comparison for 10% and 100% of the maximum training set size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining. In: Proc. of KDD 2004, pp. 158–167. ACM Press, New York (2004)

    Google Scholar 

  2. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient Graphlet Kernels for Large Graph Comparison. In: Proc. of AISTATS 2009 (2009)

    Google Scholar 

  3. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighborhood Component Analysis. In: Proc. of NIPS 2004, pp. 513–520 (2005)

    Google Scholar 

  4. Eaton, E., Desjardins, M., Lane, T.: Modeling transfer relationships between learning tasks for improved inductive transfer. In: Proc. of ECML PKDD 2008, pp. 317–332. Springer, Heidelberg (2008)

    Google Scholar 

  5. Raymond, J.W., Willett, P.: Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases. JCAMD, 59–71 (January 2002)

    Google Scholar 

  6. Sutherland, J.J., O’Brien, L.A., Weaver, D.F.: Spline-fitting with a genetic algorithm: A method for developing classification structure-activity relationships. J. Chem. Inf. Model 43(6), 1906–1915 (2003)

    Google Scholar 

  7. Sutherland, J.J., O’Brien, L.A., Weaver, D.F.: A comparison of methods for modeling quantitative structure-activity relationships. J. Med. Chem. 47(22), 5541–5554 (2004)

    Article  Google Scholar 

  8. Benigni, R., Bossa, C., Vari, M.R.: Chemical carcinogens: Structures and experimental data, http://www.iss.it/binary/ampp/cont/ISSCANv2aEn.1134647480.pdf

  9. Rückert, U., Kramer, S.: Frequent free tree discovery in graph data. In: SAC 2004, pp. 564–570. ACM Press, New York (2004)

    Google Scholar 

  10. Woznica, A., Kalousis, A., Hilario, M.: Learning to combine distances for complex representations. In: Proc. of ICML 2007, pp. 1031–1038. ACM Press, New York (2007)

    Google Scholar 

  11. Hillel, A.B., Weinshall, D.: Learning distance function by coding similarity. In: Proc. of ICML 2007, pp. 65–72. ACM Press, New York (2007)

    Google Scholar 

  12. Weinberger, K.Q., Tesauro, G.: Metric learning for kernel regression. In: Proc. of AISTATS 2007 (2007)

    Google Scholar 

  13. Baxter, J.: Learning Internal Representations. In: Proc. COLT 1995, pp. 311–320. ACM Press, New York (1995)

    Google Scholar 

  14. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6, 615–637 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach. Lear. Res. 7, 1531–1565 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific Publishing Co., Inc, Singapore (2007)

    Book  MATH  Google Scholar 

  17. Zha, Z.J., Mei, T., Wang, M., Wang, Z., Hua, X.S.: Robust distance metric learning with auxiliary knowledge. In: Proc. of IJCAI 2009, pp. 1327–1332 (2009)

    Google Scholar 

  18. Erhan, D., Bengio, Y., L’Heureux, P.J., Yue, S.Y.: Generalizing to a zero-data task: a computational chemistry case study. Technical Report 1286, Département d’informatique et recherche opérationnelle, University of Montreal (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rückert, U., Girschick, T., Buchwald, F., Kramer, S. (2010). Adapted Transfer of Distance Measures for Quantitative Structure-Activity Relationships. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds) Discovery Science. DS 2010. Lecture Notes in Computer Science(), vol 6332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16184-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16184-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16183-4

  • Online ISBN: 978-3-642-16184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics