Skip to main content

A Convex Approach for Variational Super-Resolution

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

Abstract

We propose a convex variational framework to compute high resolution images from a low resolution video. The image formation process is analyzed to provide to a well designed model for warping, blurring, downsampling and regularization. We provide a comprehensive investigation of the single model components. The super-resolution problem is modeled as a minimization problem in an unified convex framework, which is solved by a fast primal dual algorithm. A comprehensive evaluation on the influence of different kinds of noise is carried out. The proposed algorithm shows excellent recovery of information for various real and synthetic datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  Google Scholar 

  2. Kosarev, E.L.: Shannon’s superresolution limit for signal recovery. Inverse Problems 6(1), 55 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 1167–1183 (2002)

    Article  Google Scholar 

  4. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the non-local-means to super-resolution reconstruction. IEEE Transactions on Image Processing 36 (2009)

    Google Scholar 

  5. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV (2009)

    Google Scholar 

  6. van Ouwerkerk, J.: Image super-resolution survey. Image and Vision Computing 24(10), 1039–1052 (2006)

    Article  Google Scholar 

  7. Mitzel, D., Pock, T., Schoenemann, T., Cremers, D.: Video super resolution using duality based TV-L1 optical flow. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 432–441. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Fast and robust multi-frame super-resolution. IEEE Transactions on Image Processing 13, 1327–1344 (2003)

    Article  Google Scholar 

  9. Huber, P.: Robust Statistics. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  10. Schoenemann, T.: Combinatorial Solutions for Shape Optimization in Computer Vision. PhD thesis, Department of Computer Science, University of Bonn, Germany (2008)

    Google Scholar 

  11. Shechtman, E., Caspi, Y., Irani, M.: Space-time super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 531–545 (2005)

    Article  Google Scholar 

  12. Takeda, H., Milanfar, P., Protter, M., Elad, M.: Super-resolution without explicit subpixel motion estimation. Trans. Img. Proc. 18(9), 1958–1975 (2009)

    Article  Google Scholar 

  13. Middlebury (2010), http://vision.middlebury.edu/flow/ (accessed 06-May-2010)

  14. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: BMVC, London, UK (September 2009)

    Google Scholar 

  15. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the mumford-shah functional. In: ICCV (2009)

    Google Scholar 

  16. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)

    Article  MATH  Google Scholar 

  17. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for tv minimization. UCLA CAM Report [09-67] (August 2009)

    Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Unger, M., Pock, T., Werlberger, M., Bischof, H. (2010). A Convex Approach for Variational Super-Resolution. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics