Skip to main content

Improving Accuracy of LVQ Algorithm by Instance Weighting

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6354))

Included in the following conference series:

Abstract

Similarity-based methods belong to the most accurate data mining approaches. A large group of such methods is based on instance selection and optimization, with Learning Vector Quantization (LVQ) algorithm being a prominent example. Accuracy of LVQ highly depends on proper initialization of prototypes and the optimization mechanism. Prototype initialization based on context dependent clustering is introduced, and modification of the LVQ cost function that utilizes additional information about class-dependent distribution of training vectors. The new method is illustrated on 6 benchmark datasets, finding simple and accurate models of data in form of prototype-based rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aha, D.W. (ed.): Lazy learning. Kluwer Academic Publishers, Norwell (1997)

    MATH  Google Scholar 

  2. Duch, W.: Similarity based methods: a general framework for classification, approximation and association. Control and Cybernetics 29, 937–968 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Duch, W., Adamczak, R., Diercksen, G.: Classification, association and pattern completion using neural similarity based methods. Applied Mathematics and Computer Science 10, 101–120 (2000)

    Google Scholar 

  4. Pękalska, E., Paclik, P., Duin, R.: A generalized kernel approach to dissimilarity-based classification. Journal of Machine Learning Research 2, 175–211 (2001)

    Article  Google Scholar 

  5. Schölkopf, B., Smola, A.: Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  6. Sonnenburg, S., Raetsch, G., Schaefer, C., Schoelkopf, B.: Large scale multiple kernel learning. Journal of Machine Learning Research 7, 1531–1565 (2006)

    Google Scholar 

  7. Shakhnarovish, G., Darrell, T., Indyk, P. (eds.): Nearest-Neighbor Methods in Learning and Vision. MIT Press, Cambridge (2005)

    Google Scholar 

  8. Arya, S., Malamatos, T., Mount, D.: Space-time tradeoffs for approximate nearest neighbor searching. Journal of the ACM 57, 1–54 (2010)

    Article  MathSciNet  Google Scholar 

  9. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Systems, Man and Cybernetics 2, 408–421 (1972)

    Article  MATH  Google Scholar 

  10. Wilson, D., Martinez, T.: Reduction techniques for instance-based learning algorithms. Machine Learning 38, 257–286 (2000)

    Article  MATH  Google Scholar 

  11. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery 6, 153–172 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bhattacharya, B., Mukherjee, K., Toussaint, G.: Geometric decision rules for instance-based learning problems. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 60–69. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Jankowski, N., Grochowski, M.: Comparison of instance selection algorithms. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Kohonen, T.: Self-organizing maps, 3rd edn. Springer, Heidelberg (2000)

    Google Scholar 

  15. Biehl, M., Ghosh, A., Hammer, B.: Dynamics and generalization ability of lvq algorithms. J. Mach. Learn. Res. 8, 323–360 (2007)

    MathSciNet  Google Scholar 

  16. Grochowski, M., Jankowski, N.: Comparison of instance selection algorithms. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 580–585. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Duch, W., Grudziński, K.: Prototype based rules - new way to understand the data. In: IEEE International Joint Conference on Neural Networks, pp. 1858–1863. IEEE Press, Washington (2001)

    Google Scholar 

  18. Blachnik, M., Duch, W., Wieczorek, T.: Selection of prototypes rules – context searching via clustering. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 573–582. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Pedrycz, W.: Knowledge-Based Clustering: From Data to Information Granules. Wiley Interscience, Hoboken (2005)

    Book  MATH  Google Scholar 

  20. Blachnik, M., Duch, W.: Prototype rules from SVM. Springer Studies in Computational Intelligence, vol. 80, pp. 163–184. Springer, Heidelberg (2008)

    Google Scholar 

  21. Asuncion, A., Newman, D.: UCI machine learning repository (2009), http://www.ics.uci.edu/~mlearn/MLRepository.html

  22. Blachnik, M., Duch, W.: Building Localized Basis Function Networks Using Context Dependent Clustering. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 953–962. Springer, Heidelberg (2008)

    Google Scholar 

  23. Haykin, S.: Neural Networks - A Comprehensive Foundation. Maxwell MacMillian Int., New York (1994)

    MATH  Google Scholar 

  24. Wilson, D.R., Martinez, T.R.: Heterogeneous radial basis function networks. In: Proceedings of the International Conference on Neural Networks, vol. 2, pp. 1263–1276 (1996)

    Google Scholar 

  25. Spivey, M.: The continuity of mind. Oxford University Press, New York (2007)

    Google Scholar 

  26. Duch, W., Blachnik, M.: Fuzzy rule-based systems derived from similarity to prototypes. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 912–917. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blachnik, M., Duch, W. (2010). Improving Accuracy of LVQ Algorithm by Instance Weighting. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15825-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15825-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15824-7

  • Online ISBN: 978-3-642-15825-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics