Skip to main content

History-Free Aggregate Message Authentication Codes

  • Conference paper
Book cover Security and Cryptography for Networks (SCN 2010)

Abstract

Aggregate message authentication codes, as introduced by Katz and Lindell (CT-RSA 2008), combine several MACs into a single value, which has roughly the same size as an ordinary MAC. These schemes reduce the communication overhead significantly and are therefore a promising approach to achieve authenticated communication in mobile ad-hoc networks, where communication is prohibitively expensive. Here we revisit the unforgeability notion for aggregate MACs and discuss that the definition does not prevent “mix-and-match” attacks in which the adversary turns several aggregates into a “fresh” combination, i.e., into a valid aggregate on a sequence of messages which the attacker has not requested before. In particular, we show concrete attacks on the previous scheme.

To capture the broader class of combination attacks, we provide a stronger security notion of aggregation unforgeability. While we can provide stateful transformations lifting (non-ordered) schemes to meet our stronger security notion, for the statefree case we switch to the new notion of history-free sequential aggregation. This notion is somewhat between non-ordered and sequential schemes and basically says that the aggregation algorithm is carried out in a sequential order but must not depend on the preceding messages in the sequence, but only on the shorter input aggregate and the local message. We finally show that we can build an aggregation-unforgeable, history-free sequential MAC scheme based on general assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M.: New Proofs for NMAC and HMAC: Security without Collision Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Vericiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing. In: ACM Conference on Computer and Communications Security, pp. 276–285. ACM Press, New York (2007)

    Google Scholar 

  4. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Katz, J., Lindell, A.Y.: Aggregate Message Authentication Codes. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential Aggre- gate Signatures from Trapdoor Permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Neven, G.: Efficient Sequential Aggregate Signed Data. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eikemeier, O. et al. (2010). History-Free Aggregate Message Authentication Codes. In: Garay, J.A., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2010. Lecture Notes in Computer Science, vol 6280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15317-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15317-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15316-7

  • Online ISBN: 978-3-642-15317-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics