Skip to main content

Characterization of Phosphorus Forms in Soil Microorganisms

  • Chapter
  • First Online:
Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

Characterization of phosphorus (P) forms in soil microorganisms is a novel approach to reach a better understanding of the role of bacteria and fungi as sink and source of P. After an overview of methods for cultivation of microorganisms, extraction from soil, and chemical analysis, two case studies are presented, one on pure cultures and one on microbial cells extracted from soil. Analysis of pure cultures of bacteria and fungi by 31P NMR suggested a predominantly fungal origin of pyrophosphate, polyphosphate, and phosphonates in soils. The first report of P forms in microbial cells extracted from soil showed similar concentrations of total P, P in phospholipids, and DNA per cell as found in aquatic microorganisms, but lower concentrations of RNA. Cell P concentrations tended to increase upon carbon addition to a tropical Ferralsol, whereas sole or additional P amendment had no significant effect. The scope and limits of this new approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aakra Å, Hesselsoe M, Bakken LR (2000) Surface attachment of ammonia-oxidizing bacteria in soil. Microb Ecol 39:222–235

    CAS  PubMed  Google Scholar 

  • Arnoldsson KC, Kaufmann P (1994) Lipid class analysis by normal phase high performance liquid chromatography. Development and optimization using multivariate methods. Chromatographia 38:317–324

    Article  CAS  Google Scholar 

  • Bakken LR, Frostegård Å (2006) Nucleic acid extraction from soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin, pp 49–73

    Chapter  Google Scholar 

  • Bakken LR, Lindahl V (1995) Recovery of bacterial cells from soil. In: Van Elsas JD, Trevors JT (eds) Nucleic acids in the environment: methods and applications. Springer, Berlin, pp 9–27

    Chapter  Google Scholar 

  • Bakken LR, Olsen RA (1989) DNA-content of soil bacteria of different cell size. Soil Biol Biochem 21:789–793

    Article  Google Scholar 

  • Bhattacharya M, Fuhrman L, Ingram A, Nickerson KW, Conway T (1995) Single-run separation and detection of multiple metabolic intermediates by anion-exchange high-performance liquid chromatography and application to cell pool extracts prepared from Escherichia coli. Anal Biochem 232:98–106

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar AP, Erdman LK, Schertzer JW, Brown ED (2004) Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid. J Bacteriol 186:7865–7873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004a) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Article  Google Scholar 

  • Bünemann EK, Smithson PC, Jama B, Frossard E, Oberson A (2004b) Maize productivity and nutrient dynamics in maize-fallow rotations in western Kenya. Plant Soil 264:195–208

    Article  Google Scholar 

  • Bünemann EK, Smernik RJ, Doolette AL, Marschner P, Stonor R, Wakelin SA, McNeill AM (2008a) Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biol Biochem 40:1908–1915

    Article  Google Scholar 

  • Bünemann EK, Smernik RJ, Marschner P, McNeill AM (2008b) Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils. Soil Biol Biochem 40:932–946

    Article  Google Scholar 

  • Burton K (1956) Study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62:315–323

    CAS  PubMed  Google Scholar 

  • Caldwell AG, Black CA (1958) Inositol hexaphosphate. II. Synthesis by soil microorganisms. Soil Sci Soc Am Proc 22:293–296

    Article  CAS  Google Scholar 

  • Cotner JB, Makino W, Biddanda BA (2006) Temperature affects stoichiometry and biochemical composition of Escherichia coli. Microb Ecol 52:26–33

    Article  CAS  PubMed  Google Scholar 

  • Courtois S, Frostegard A, Goransson P, Depret G, Jeannin P, Simonet P (2001) Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ Microbiol 3:431–439

    Article  CAS  PubMed  Google Scholar 

  • Danku JMC, Gumaelius L, Baxter I, Salt DE (2009) A high-throughput method for Saccharomyces cerevisiae (yeast) ionomics. J Anal At Spectrom 24:103–107

    Article  CAS  Google Scholar 

  • De Mey M, Lequeux G, Maertens J, De Maeseneire S, Soetaert W, Vandamme E (2006) Comparison of DNA and RNA quantification methods suitable for parameter estimation in metabolic modeling of microorganisms. Anal Biochem 353:198–203

    Article  PubMed  Google Scholar 

  • Doolette AL, Smernik RJ (2011) Soil organic phosphorus speciation using spectroscopic techniques. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_1

    Google Scholar 

  • Duboc P, Schill N, Menoud L, Vangulik W, Vonstockar U (1995) Measurements of sulfur, phosphorus and other ions in microbial biomass – influence on correct determination of elemental composition and degree of reduction. J Biotechnol 43:145–158

    Article  CAS  PubMed  Google Scholar 

  • Ebina J, Tsutsui T, Shirai T (1983) Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Res 17:1721–1726

    Article  CAS  Google Scholar 

  • Ehlers K, Bünemann EK, Oberson A, Frossard E, Frostegård Å, Yuejian M, Bakken LR (2008) Extraction of soil bacteria from a Ferralsol. Soil Biol Biochem 40:1940–1946

    Article  CAS  Google Scholar 

  • Ehlers K, Bakken LR, Frostegård Å, Frossard E, Bünemann EK (2010) Phosphorus limitation in a Ferralsol: impact on microbial activity and cell-internal P pools. Soil Biol Biochem 42:558–566

    Article  CAS  Google Scholar 

  • Ellwood DC, Tempest DW (1972) Influence of culture pH on content and composition of teichoic acids in walls of Bacillus subtilis. J Gen Microbiol 73:395–402

    Article  CAS  PubMed  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    Article  Google Scholar 

  • Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943

    Article  Google Scholar 

  • Endo Y (1970) A simultaneous estimation method of DNA and RNA by orcinol reaction and a study on reaction mechanism. J Biochem 67:629–633

    CAS  PubMed  Google Scholar 

  • Faegri A, Torsvik VL, Goksoyr J (1977) Bacterial and fungal activities in soil – separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem 9:105–112

    Article  Google Scholar 

  • Fagerbakke KM, Heldal M, Norland S (1996) Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat Microb Ecol 10:15–27

    Article  Google Scholar 

  • Frisvad JC, Thrane U (1987) Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indexes and UV-VIS spectra (diode-array detection). J Chromatogr 404:195–214

    Article  CAS  PubMed  Google Scholar 

  • Frossard E, Achat DL, Bernasconi SM, Bünemann EK, Fardeau J-C, Jansa J, Morel C, Rabeharisoa L, Randriamanantsoa L, Sinaj S, Tamburini F, Oberson A (2011) The use of tracers to investigate phosphate cycling in soil–plant systems. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_3

    Google Scholar 

  • Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Frostegård Å, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Gorokhova E, Kyle M (2002) Analysis of nucleic acids in Daphnia: development of methods and ontogenetic variations in RNA-DNA content. J Plankton Res 24:511–522

    Article  CAS  Google Scholar 

  • Gundersen K, Heldal M, Norland S, Purdie DA, Knap AH (2002) Elemental C, N, and P cell content of individual bacteria collected at the Bermuda Atlantic Time-Series Study (BATS) site. Limnol Oceanogr 47:1525–1530

    Article  CAS  Google Scholar 

  • Heldal M, Norland S, Tumyr O (1985) X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Appl Environ Microbiol 50:1251–1257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heller DN, Murphy CM, Cotter RJ, Fenselau C, Uy OM (1988) Constant neutral loss scanning for the characterization of bacterial phospholipids desorbed by fast atom bombardment. Anal Chem 60:2787–2791

    Article  CAS  PubMed  Google Scholar 

  • Herbert D (1961) The chemical composition of microorganisms as a function of their environment. In: Meynell GG, Gooder H (eds) Microbial reaction to environment: eleventh symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, pp 391–416

    Google Scholar 

  • Holmhans O, Booth CR (1966) Measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol Oceanogr 11:510–519

    Article  Google Scholar 

  • Hossack JA, Rose AH (1976) Fragility of plasma membranes in Saccharomyces cerevisiae enriched with different sterols. J Bacteriol 127:67–75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jakobsen I, Smith SE, Smith FA (2002) Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin, pp 75–92

    Google Scholar 

  • Jansa J, Finlay R, Wallander H, Smith FA, Smith SE (2011) Role of mycorrhizal symbioses in phosphorus cycling. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_6

    Google Scholar 

  • Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkinson DS, Oades JM (1979) A method for measuring adenosine triphosphate in soil. Soil Biol Biochem 11:193–199

    Article  CAS  Google Scholar 

  • Koukol O, Novak F, Hrabal R (2008) Composition of the organic phosphorus fraction in basidiocarps of saprotrophic and mycorrhizal fungi. Soil Biol Biochem 40:2464–2467

    Article  CAS  Google Scholar 

  • Krueger R, Zinn N, Lehmann WD (2009) Quantification of protein phosphorylation by μLC-ICP-MS. In: de Graauw M (ed) Phospho-proteomics. Humana, Clifton, pp 201–218

    Chapter  Google Scholar 

  • Lambert C, Weuster-Botz D, Weichenhain R, Kreutz EW, AAd G, Schoberth SM (2002) Monitoring of inorganic polyphosphate dynamics in Corynebacterium glutamicum using a novel oxygen sparger for real time 31P in vivo NMR. Acta Biotechnol 22:245–260

    Article  CAS  Google Scholar 

  • Lindahl V (1996) Improved soil dispersion procedures for total bacterial counts, extraction of indigenous bacteria and cell survival. J Microbiol Methods 25:279–286

    Article  Google Scholar 

  • Lindahl V, Bakken LR (1995) Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol Ecol 16:135–142

    Article  CAS  Google Scholar 

  • Lovdal T, Skjoldal EF, Heldal M, Norland S, Thingstad TF (2008) Changes in morphology and elemental composition of Vibrio splendidus along a gradient from carbon-limited to phosphate-limited growth. Microb Ecol 55:152–161

    Article  PubMed  Google Scholar 

  • Macklon AES, Grayston SJ, Shand CA, Sim A, Sellars S, Ord BG (1997) Uptake and transport of phosphorus by Agrostis capillaris seedlings from rapidly hydrolysed organic sources extracted from 32P-labelled bacterial cultures. Plant Soil 190:163–167

    Article  CAS  Google Scholar 

  • Makarov MI, Haumaier L, Zech W, Marfenina OE, Lysak LV (2005) Can 31P NMR spectroscopy be used to indicate the origins of soil organic phosphates? Soil Biol Biochem 37:15–25

    Article  CAS  Google Scholar 

  • Makino W, Cotner JB (2004) Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: implications for growth- and resource-dependent variations. Aquat Microb Ecol 34:33–41

    Article  Google Scholar 

  • Makino W, Cotner JB, Sterner RW, Elser JJ (2003) Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct Ecol 17:121–130

    Article  Google Scholar 

  • Maron PA, Schimann H, Ranjard L, Brothier E, Domenach AM, Lensi R, Nazaret S (2006) Evaluation of quantitative and qualitative recovery of bacterial communities from different soil types by density gradient centrifugation. Eur J Soil Biol 42:65–73

    Article  Google Scholar 

  • Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29:1–16

    Article  CAS  PubMed  Google Scholar 

  • Mazzella N, Molinet J, Syakti AD, Dodi A, Bertrand JC, Doumenq P (2005) Use of electrospray ionization mass spectrometry for profiling of crude oil effects on the phospholipid molecular species of two marine bacteria. Rapid Commun Mass Spectrom 19:3579–3588

    Article  CAS  PubMed  Google Scholar 

  • Moreau RA, Powell MJ, Osman SF, Whitaker BD, Fett WF, Roth L, Obrien DJ (1995) Analysis of intact hopanoids and other lipids from the bacterium Zymomonas mobilis by high performance liquid chromatography. Anal Biochem 224:293–301

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, George E (2005) Extraction of extraradical arbuscular mycorrhizal mycelium from compartments filled with soil and glass beads. Mycorrhiza 15:533–537

    Article  PubMed  Google Scholar 

  • Norland S, Fagerbakke KM, Heldal M (1995) Light element analysis of individual bacteria by X-ray microanalysis. Appl Environ Microbiol 61:1357–1362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oberson A, Joner EJ (2005) Microbial turnover of phosphorus in soil. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 133–164

    Chapter  Google Scholar 

  • Oberson A, Friesen DK, Rao IM, Bühler S, Frossard E (2001) Phosphorus transformations in an Oxisol under contrasting land-use systems: the role of the soil microbial biomass. Plant Soil 237:197–210

    Article  CAS  Google Scholar 

  • Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36:667–675

    Article  CAS  Google Scholar 

  • Olander LP, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 7:404–419

    Article  CAS  Google Scholar 

  • Pal MK, Ghosh JK, Das S (1989) Spectrophotometric and spectrofluorometric titrations of teichoic acid. Indian J Biochem Biophys 26:311–314

    CAS  PubMed  Google Scholar 

  • Priemé A, Sitaula JIB, Klemedtsson ÅK, Bakken LR (1996) Extraction of methane-oxidizing bacteria from soil particles. FEMS Microbiol Ecol 21:59–68

    Article  Google Scholar 

  • Rasmussen N, Lloyd D, Ratcliffe R, Hansen P, Jakobsen I (2000) 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant Soil 226:245–253

    Article  CAS  Google Scholar 

  • Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2006) Quantitation of nucleic acids. In: Sambrook J, Russel DW (eds) The condensed protocols: from molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 739–741

    Google Scholar 

  • Sandaa RA, Enger O, Torsvik V (1998) Rapid method for fluorometric quantification of DNA in soil. Soil Biol Biochem 30:265–268

    Article  CAS  Google Scholar 

  • Seeling B, Zasoski RJ (1993) Microbial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil. Plant Soil 148:277–284

    Article  CAS  Google Scholar 

  • Sitaula BK, Almas A, Bakken LR, Singh BR (1999) Assessment of heavy metals associated with bacteria in soil. Soil Biol Biochem 31:315–316

    Article  CAS  Google Scholar 

  • Smedsgaard J (1997) Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 760:264–270

    Article  CAS  PubMed  Google Scholar 

  • Smits HP, Cohen A, Buttler T, Nielsen J, Olsson L (1998) Cleanup and analysis of sugar phosphates in biological extracts by using solid-phase extraction and anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 261:36–42

    Article  CAS  PubMed  Google Scholar 

  • Tempest DW, Wouters JTM (1981) Properties and performance of microorganisms in chemostat culture. Enzyme Microb Technol 3:283–290

    Article  CAS  Google Scholar 

  • Tiessen H, Ballester MV, Salcedo I (2011) Phosphorus and global change. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_18

    Google Scholar 

  • Torsvik VL, Goksoyr J (1978) Determination of bacterial DNA in soil. Soil Biol Biochem 10:7–12

    Article  Google Scholar 

  • Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449–469

    Article  CAS  PubMed  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003) Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Sci Soc Am J 67:497–510

    Article  CAS  Google Scholar 

  • Vadstein O (1998) Evaluation of competitive ability of two heterotrophic planktonic bacteria under phosphorus limitation. Aquat Microb Ecol 14:119–127

    Article  Google Scholar 

  • Vadstein O (2000) Heterotrophic, planktonic bacteria and cycling of phosphorus: phosphorus requirements, competitive ability, and food web interactions. Adv Microb Ecol 16:115–167

    Article  CAS  Google Scholar 

  • Valeur A, Michelsen P, Odham G (1993) Online straight phase liquid chromatography plasmaspray tandem mass spectrometry of glycerolipids. Lipids 28:255–259

    Article  CAS  Google Scholar 

  • Van Der Meeren P, Vanderdeelen J, Baert L (1992) Phospholipid analysis by HPLC. In: Nollet LML (ed) Food analysis by HPLC. Food science and technology, vol 52. Marcel Dekker, New York, pp 241–258

    Google Scholar 

  • Viereck N, Hansen PE, Jakobsen I (2004) Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopy. New Phytol 162:783–794

    Article  CAS  Google Scholar 

  • Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429

    Article  CAS  PubMed  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Rosengren U (2003) Direct estimates of C:N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biol Biochem 35:997–999

    Article  CAS  Google Scholar 

  • Wang Y, Hammes F, Boon N, Egli T (2007) Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 μm pore size filters and shape-dependent enrichment of filterable bacterial communities. Environ Sci Technol 41:7080–7086

    Article  CAS  PubMed  Google Scholar 

  • Wanner U, Egli T (1990) Dynamics of microbial growth and cell composition in batch culture. FEMS Microbiol Rev 75:19–44

    Article  CAS  Google Scholar 

  • Werner TP, Amrhein N, Freimoser FM (2005) Novel method for the quantification of inorganic polyphosphate (iPoP) in Saccharomyces cerevisiae shows dependence of iPoP content on the growth phase. Arch Microbiol 184:129–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Astrid Oberson for initiating this work and the entire Group of Plant Nutrition for fruitful discussions on the topic. We are grateful to Cory Cleveland, Astrid Oberson, and Emmanuel Frossard for helping to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Else K. Bünemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Bünemann, E.K., Prusisz, B., Ehlers, K. (2011). Characterization of Phosphorus Forms in Soil Microorganisms. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_2

Download citation

Publish with us

Policies and ethics