Skip to main content

Management Impacts on Biological Phosphorus Cycling in Cropped Soils

  • Chapter
  • First Online:
Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

Phosphorus (P) is a limited resource and P deficiency limits crop production on large areas worldwide. Future food security, therefore, will largely depend on efficient P use in cropping systems. In this review, we present the impact of farmers’ interventions on biological P cycling in cropped soils of temperate and tropical regions, with emphasis on microbial functions in soil P dynamics. We exemplify the effects of (1) soil tillage, with a focus on the comparison of conventional tillage versus direct seeding systems; (2) fertilizer input, using organic and/or mineral nutrient sources; and (3) integration of legumes into cropping systems. We analyze whether and how biological processes can be influenced to increase the use efficiency of soil and fertilizer P. Finally, we formulate recommendations for an integrated P management. Future research should target improved biological access to recalcitrant inorganic and organic P forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abunyewa AA, Osei D, Asiedu EK, Safo EY (2007) Integrated manure and fertilizer use, maize production and sustainable soil fertility in sub humid zone of West Africa. J Agron 6:302–309

    Google Scholar 

  • Akponikpe PBI, Michels K, Bielders CL (2008) Integrated nutrient management of pearl millet in the Sahel combining cattle manure, crop residue and mineral fertilizer. Exp Agric 44:453–472

    CAS  Google Scholar 

  • Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    CAS  Google Scholar 

  • Alvey S, Bagayoko M, Neumann G, Buerkert A (2001) Cereal/legume rotations affect chemical properties and biological activities in two West African soils. Plant Soil 231:45–54

    CAS  Google Scholar 

  • Alvey S, Yang CH, Buerkert A, Crowley DE (2003) Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biol Fertil Soils 37:73–82

    Google Scholar 

  • Bagayoko M, Buerkert A, Lung G, Bationo A, Romheld V (2000) Cereal/legume rotation effects on cereal growth in Sudano-Sahelian West Africa: soil mineral nitrogen, mycorrhizae and nematodes. Plant Soil 218:103–116

    CAS  Google Scholar 

  • Balota EL, Colozzi A, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38:15–20

    Google Scholar 

  • Bassala JPO, M'Biandoun M, Ekorong JA, Asfom P (2008) Changes in soil fertility under the cotton and cereal farming system in North Cameroon: diagnostic and perspectives. Tropicultura 26:240–245

    Google Scholar 

  • Berner A, Hildermann I, Fliessbach A, Pfiffner L, Niggli U, Mader P (2008) Crop yield and soil fertility response to reduced tillage under organic management. Soil Till Res 101:89–96

    Google Scholar 

  • Boddey RM, Alves BJR, Urquiaga S (2006) Leguminous biological nitrogen fixation in sustainable tropical agroecosystems. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRC, Boca Raton, FL, pp 401–408

    Google Scholar 

  • Bolan N, Hedley M, White R (1991) Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 134:53–63

    CAS  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Google Scholar 

  • Bünemann E, Bossio DA, Smithson PC, Frossard E, Oberson A (2004a) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Google Scholar 

  • Bünemann E, Smithson PC, Jama B, Frossard E, Oberson A (2004b) Maize productivity and nutrient dynamics in maize-fallow rotations in western Kenya. Plant Soil 264:195–208

    Google Scholar 

  • Bünemann EK, Steinebrunner F, Smithson PC, Frossard E, Oberson A (2004c) Phosphorus dynamics in a highly weathered soil as revealed by isotopic labeling techniques. Soil Sci Soc Am J 68:1645–1655

    Google Scholar 

  • Bünemann EK, Heenan DP, Marschner P, McNeill AM (2006a) Long-term effects of crop rotation, stubble management and tillage on soil phosphorus dynamics. Aust J Soil Res 44:611–618

    Google Scholar 

  • Bünemann EK, Schwenke GD, Van Zwieten L (2006b) Impact of agricultural inputs on soil organisms – a review. Aust J Soil Res 44:379–406

    Google Scholar 

  • Bünemann EK, Prusisz B, Ehlers K (2011) Characterization of phosphorus forms in soil microorganisms. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_2

  • Caamal-Maldonado JA, Jiménez-Osornio JJ, Torres-Barragán A, Anaya AL (2001) The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron J 93:27–36

    Google Scholar 

  • Chapuis-Lardy L, Ramiandrisoa RS, Randriamanantsoa L, Morel C, Rabeharisoa L, Blanchart E (2009) Modification of P availability by endogeic earthworms (Glossoscolecidae) in Ferralsols of the Malagasy Highlands. Biol Fertil Soils 45:415–422. doi:10.1007/s00374-00008-00350-y

    Google Scholar 

  • Chapuis-Lardy L, Le Bayon R-C, Brossard M, López-Hernández D, Blanchart E (2011) Role of soil macrofauna in phosphorus cycling. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_8

  • Chassot A, Stamp P, Richner W (2001) Root distribution and morphology of maize seedlings as affected by tillage and fertilizer placement. Plant Soil 231:123–135

    CAS  Google Scholar 

  • Cherr CM, Scholberg JMS, McSorley R (2006) Green manure approaches to crop production: a synthesis. Agron J 98:302–319

    Google Scholar 

  • Cobo JG, Dercon G, Cadisch G (2010) Nutrient balances in African land use systems across different spatial scales: a review of approaches, challenges and progress. Agric Ecosyst Environ 136:1–15

    Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Google Scholar 

  • Cornish PS (2009) Phosphorus management on extensive organic and low-input farms. Crop Pasture Sci 60:105–115

    CAS  Google Scholar 

  • Crews TE, Peoples MB (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr Cycl Agroecosyst 72:101–120

    CAS  Google Scholar 

  • Dann PR, Derrick JW, Dumaresq DC, Ryan MH (1996) The response of organic and conventionally grown wheat to superphosphate and reactive phosphate rock. Aust J Exp Agric 36:71–78

    Google Scholar 

  • Dao TH, Schwartz RC (2011) Effects of manure management on phosphorus biotransformations and losses during animal production. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_16

  • Daroub SH, Pierce FJ, Ellis BG (2000) Phosphorus fractions and fate of phosphorus-33 in soils under plowing and no-tillage. Soil Sci Soc Am J 64:170–176

    CAS  Google Scholar 

  • Douxchamps S (2010) Integration of Canavalia brasiliensis into the crop-livestock system of the Nicaraguan hillsides: environmental adaption and nitrogen dynamics. Dissertation, ETH Zurich

    Google Scholar 

  • Douxchamps S, Humbert FL, Van der Hoek R, Mena M, Bernasconi S, Schmidt A, Rao IM, Frossard E, Oberson A (2010) Nitrogen balances in farmers fields under alternative uses of a cover crop legume – a case study from Nicaragua. Nutr Cycl Agroecosyst. doi:10.1007/s10705-010-9368-2

    Google Scholar 

  • Ehlers K, Bakken LR, Frostegard A, Frossard E, Bünemann E (2010) Phosphorus limitation in a Ferralsol: impact on microbial activity and cell internal P-pools. Soil Biol Biochem 42:558–566

    CAS  Google Scholar 

  • Ernst G, Emmerling C (2009) Impact of five different tillage systems on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten year period. Eur J Soil Biol 45:247–251

    CAS  Google Scholar 

  • FAO (2009) How to feed the world in 2050. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. Accessed 13 Aug 2010

  • Fliessbach A, Oberholzer HR, Gunst L, Mader P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118:273–284

    Google Scholar 

  • Friesen DK, Rao IM, Thomas RJ, Oberson A, Sanz JI (1997) Phosphorus acquisition and cycling in crop and pasture systems in low fertility tropical soils. Plant Soil 196:289–294

    CAS  Google Scholar 

  • Frossard E, Bünemann E, Jansa J, Oberson A, Feller C (2009) Concepts and practices of nutrient management in agro-ecosystems: can we draw lessons from history to design future sustainable agricultural production systems? Bodenkultur 60:5–22

    Google Scholar 

  • Frossard E, Achat DL, Bernasconi SM, Bünemann EK, Fardeau J-C, Jansa J, Morel C, Rabeharisoa L, Randriamanantsoa L, Sinaj S, Tamburini F, Oberson A (2011) The use of tracers to investigate phosphate cycling in soil–plant systems. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_3

  • Gathumbi SM, Cadisch G, Buresh RJ, Giller KE (2003) Subsoil nitrogen capture in mixed legume stands as assessed by deep nitrogen-15 placement. Soil Sci Soc Am J 67:573–582

    CAS  Google Scholar 

  • George TS, Fransson A-M, Hammond JP, White PJ (2011) Phosphorus nutrition: rhizosphere processes, plant response and adaptations. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_10

  • Giller KE, Witter E, Corbeels M, Tittonell P (2009) Conservation agriculture and smallholder farming in Africa: the heretics' view. Field Crop Res 114:23–34

    Google Scholar 

  • Hedley MJ, White RE, Nye PH (1982) Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings III: changes in L value, soil phosphate fractions and phosphatase activity. New Phytol 91:45–56

    CAS  Google Scholar 

  • Henry A, Chaves NF, Kleinman PJA, Lynch JP (2010) Will nutrient-efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (Phaseolus vulgaris L.) on soil phosphorus depletion in a low-input agro-ecosystem in Central America. Field Crop Res 115:67–78

    Google Scholar 

  • Herridge D, Peoples M, Boddey R (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    CAS  Google Scholar 

  • Hogh-Jensen H, Schjoerring JK, Soussana JF (2002) The influence of phosphorus deficiency on growth and nitrogen fixation of white clover plants. Ann Bot 90:745–753

    CAS  PubMed  Google Scholar 

  • Horst WJ, Kamh M, Jibrin JM, Chude VO (2001) Agronomic measures for increasing P availability to crops. Plant Soil 237:211–223

    CAS  Google Scholar 

  • Houot S, Chaussod R (1995) Impact of agricultural practices on the size and activity of the microbial biomass in a long-term field experiment. Biol Fertil Soils 19:309–316

    Google Scholar 

  • Huggins DR, Reganold JP (2008) No-till: the quiet revolution. Sci Am 299:70–77

    PubMed  Google Scholar 

  • Husson O, Séguy L, Michellon R, Boulakia S (2006) Restoration of acid soil systems through agroecological management. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRC, Boca Raton, FL, pp 343–356

    Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Google Scholar 

  • Jansa J, Wiemken A, Frossard E (2006) The effects of agricultural practices on arbuscular mycorrhizal fungi. In: Frossard E, Blum WEH, Warkentin BP (eds) Function of soils for human societies and the environment. Geological Society Special Publications, London, pp 89–115

    Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    CAS  PubMed  Google Scholar 

  • Jansa J, Finlay R, Wallander H, Smith FA, Smith SE (2011) Role of mycorrhizal symbioses in phosphorus cycling. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_6

  • Jemo M, Abaidoo R, Nolte C, Tchienkoua M, Sanginga N, Horst W (2006) Phosphorus benefits from grain-legume crops to subsequent maize grown on acid soils of southern Cameroon. Plant Soil 284:385–397

    CAS  Google Scholar 

  • Jiménez JJ, Cepeda A, Decaëns T, Oberson A, Friesen DK (2003) Phosphorus fractions and dynamics in surface earthworm casts under native and improved grasslands in a Colombian savanna oxisol. Soil Biol Biochem 35:715–727

    Google Scholar 

  • Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_7

  • Kamh M, Abdou M, Chude V, Wiesler F, Horst WJ (2002) Mobilization of phosphorus contributes to positive rotational effects of leguminous cover crops on maize grown on soils from northern Nigeria. J Plant Nutr Soil Sci 165:566–572

    CAS  Google Scholar 

  • Keller M, Oberson A, Frossard E, Mäder P, Mayer J and Bünemann EK (2009) Einfluss unterschiedlicher Bewirtschaftungsverfahren auf P-Formen und P-Dynamik im Boden. In: Mayer J, Alföldi T, Leiber F, Dubois D, Fried P, Heckendorn F, Hillmann E, Klocke P, Lüscher A, Riedel S, Stolze M, Strasser F, van der Heijden M, Willer H (eds) 10. Wissenschaftstagung Ökologischer Landbau. ETH Zürich, pp 73–74

    Google Scholar 

  • Kuligowski K, Poulsen TG (2009) Phosphorus leaching from soils amended with thermally gasified piggery waste ash. Waste Manage 29:2500–2508

    CAS  Google Scholar 

  • Kwabiah AB, Stoskopf NC, Palm CA, Voroney RP (2003) Soil P availability as affected by the chemical composition of plant materials: implications for P-limiting agriculture in tropical Africa. Agric Ecosyst Environ 100:53–61

    CAS  Google Scholar 

  • Leifeld J, Reiser R, Oberholzer HR (2009) Consequences of conventional versus organic farming on soil carbon: results from a 27-year field experiment. Agron J 101:1204–1218

    CAS  Google Scholar 

  • Lesschen JP, Stoorvogel JJ, Smaling EMA, Heuvelink GBM, Veldkamp A (2007) A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level. Nutr Cycl Agroecosyst 78:111–131

    Google Scholar 

  • Li L, Tang C, Rengel Z, Zhang F (2003) Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source. Plant Soil 248:297–303

    CAS  Google Scholar 

  • Li L, Tang C, Rengel Z, Zhang FS (2004) Calcium, magnesium and microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Plant Soil 261:29–37

    CAS  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196

    CAS  PubMed  Google Scholar 

  • Liebig MA, Doran JW (1999) Impact of organic production practices on soil quality indicators. J Environ Qual 28:1601–1609

    CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Google Scholar 

  • Mäder P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31:150–156

    Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    PubMed  Google Scholar 

  • Mafongoya PL, Giller KE, Odee D, Gathumbi S, Ndufa SK, Sitompul SM (2004) Benefiting from N2-fixation and managing rhizobia. In: Van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems. CABI, Wallingford, UK, pp 227–242

    Google Scholar 

  • Marschner P, Joergensen RG, Piepho HP, Buerkert A (2004) Legume rotation effects on early growth and rhizosphere microbiology of sorghum in West African soils. Plant Soil 264:325–334

    CAS  Google Scholar 

  • Materechera SA, Morutse HM (2009) Response of maize to phosphorus from fertilizer and chicken manure in a semi-arid environment of South Africa. Exp Agric 45:261–273

    Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119:22–32

    Google Scholar 

  • McLaughlin MJ, Alston AM (1986) The relative contribution of plant residues and fertilizer to the P nutrition of wheat in a pasture/cereal system. Aust J Soil Res 24:517–526

    Google Scholar 

  • McLaughlin MJ, Alston AM, Martin JK (1988) Phosphorus cycling in wheat-pasture rotations II. The role of the microbial biomass in phosphorus cycling. Aust J Soil Res 26:333–342

    Google Scholar 

  • Miller MH (2000) Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies. Can J Plant Sci 80:47–52

    CAS  Google Scholar 

  • Moore JM, Klose S, Tabatabai MA (2000) Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol Fertil Soils 31:200–210

    CAS  Google Scholar 

  • Muchane MN, Jama B, Othieno C, Okalebo R, Odee D, Machuna J, Jansa J (2010) Influence of improved fallow systems and phosphorus application on arbuscular mycorrhizal fungi symbiosis in maize grown in western Kenya. Agrofor Syst 78:139–150

    Google Scholar 

  • Mucheru-Muna M, Pypers P, Mugendi D, Kung'u J, Mugwe J, Merckx R, Vanlauwe B (2010) A staggered maize-legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crop Res 115:132–139

    Google Scholar 

  • Mukuralinda A, Tenywa JS, Verchot L, Obua J, Namirembe S (2009) Decomposition and phosphorus release of agroforestry shrub residues and the effect on maize yield in acidic soils of Rubona, southern Rwanda. Nutr Cycl Agroecosyst 84:155–166

    Google Scholar 

  • Nachimuthu G, Guppy C, Kristiansen P, Lockwood P (2009) Isotopic tracing of phosphorus uptake in corn from P-33 labelled legume residues and P-32 labelled fertilisers applied to a sandy loam soil. Plant Soil 314:303–310

    CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_9

  • Neumann G, Martinoia E (2002) Cluster roots – an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    CAS  PubMed  Google Scholar 

  • Nziguheba G, Merckx R, Palm CA, Rao MR (2000) Organic residues affect phosphorus availability and maize yields in a Nitisol of western Kenya. Biol Fertil Soils 32:328–339

    CAS  Google Scholar 

  • Nziguheba G, Merckx R, Palm CA, Mutuo P (2002) Combining Tithonia diversifolia and fertilizers for maize production in a phosphorus deficient soil in Kenya. Agrofor Syst 55:165–174

    Google Scholar 

  • Oberson A, Frossard E (2005) Phosphorus management for organic agriculture. In: Sims T, Sharpley AN (eds) Phosphorus: agriculture and the environment. Agronomy monograph 46. ASA/CSSA/SSSA, Madison, WI, pp 761-779

    Google Scholar 

  • Oberson A, Joner EJ (2005) Microbial turnover of phosphorus in soil. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, UK, pp 133–164

    Google Scholar 

  • Oberson A, Fardeau JC, Besson JM, Sticher H (1993) Soil-phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods. Biol Fertil Soils 16:111–117

    CAS  Google Scholar 

  • Oberson A, Friesen DK, Rao IM, Bühler S, Frossard E (2001) Phosphorus transformations in an Oxisol under contrasting land- use systems: the role of the soil microbial biomass. Plant Soil 237:197–210

    CAS  Google Scholar 

  • Oberson A, Bünemann EK, Friesen DK, Rao IM, Smithson PC, Turner BL, Frossard E (2006) Improving phosphorus fertility in tropical soils through biological interventions. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRC, Boca Raton, FL, pp 531–546

    Google Scholar 

  • Oberson A, Tagmann H, Langmeier M, Dubois D, Mäder P, Frossard E (2010) Fresh and residual phosphorus uptake by ryegrass from soils with different fertilization histories. Plant Soil 334:391–407

    Google Scholar 

  • Oehl F, Oberson A, Probst M, Fliessbach A, Roth HR, Frossard E (2001) Kinetics of microbial phosphorus uptake in cultivated soils. Biol Fertil Soils 34:31–41

    Google Scholar 

  • Oehl F, Oberson A, Tagmann HU, Besson JM, Dubois D, Mäder P, Roth HR, Frossard E (2002) Phosphorus budget and phosphorus availability in soils under organic and conventional farming. Nutr Cycl Agroecosyst 62:25–35

    CAS  Google Scholar 

  • Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36:667–675

    CAS  Google Scholar 

  • Ojiem JO, Vanlauwe B, De Ridder N, Giller KE (2007) Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms. Plant Soil 292:119–135

    CAS  Google Scholar 

  • Okogun JA, Sanginga N, Abaidoo R, Dashiell KE, Diels J (2005) On-farm evaluation of biological nitrogen fixation potential and grain yield of Lablab and two soybean varieties in the northern Guinea savanna of Nigeria. Nutr Cycl Agroecosyst 73:267–275

    Google Scholar 

  • Olander LP, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 7:404–419

    CAS  Google Scholar 

  • Onduru DD, du Preez CC, Muchena FN, Gachimbi LN, de Jager A, Gachini GN (2008) Exploring options for integrated nutrient management in semi-arid tropics using farmer field schools: a case study in Mbeere District, eastern Kenya. Int J Agric Sustain 6:208–228

    Google Scholar 

  • Opala PA, Jama BA, Othieno CO, Okalebo JR (2007) Effect of phosphate fertilizer application methods and nitrogen sources on maize in western Kenya: an agronomic and economic evaluation. Exp Agric 43:477–487

    CAS  Google Scholar 

  • Palm CA, Gachengo CN, Delve RJ, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83:27–42

    Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggaard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17

    CAS  Google Scholar 

  • Pypers P, Van Loon L, Diels J, Abaidoo R, Smolders E, Merckx R (2006) Plant-available P for maize and cowpea in P-deficient soils from the Nigerian Northern Guinea Savanna – comparison of E- and L-values. Plant Soil 283:251–264

    CAS  Google Scholar 

  • Pypers P, Huybrighs M, Diels J, Abaidoo R, Smolders E, Merckx R (2007) Does the enhanced P acquisition by maize following legumes in a rotation result from improved soil P availability? Soil Biol Biochem 39:2555–2566

    CAS  Google Scholar 

  • Rabary B, Sall S, Letourmy P, Husson O, Ralambofetra E, Moussa N, Chotte J-L (2008) Effects of living mulches or residue amendments on soil microbial properties in direct seeded cropping systems of Madagascar. Appl Soil Ecol 39:236–243

    Google Scholar 

  • Rufino MC, Rowe EC, Delve RJ, Giller KE (2006) Nitrogen cycling efficiencies through resource-poor African crop-livestock systems. Agric Ecosyst Environ 112:261–282

    Google Scholar 

  • Rufino MC, Tittonell P, van Wijk MT, Castellanos-Navarrete A, Delve RJ, de Ridder N, Giller KE (2007) Manure as a key resource within smallholder farming systems: analysing farm-scale nutrient cycling efficiencies with the NUANCES framework. Livest Sci 112:273–287

    Google Scholar 

  • Satter LD, Klopfenstein TJ, Erickson GE, Powell JM (2005) Phosphorus and dairy/beef nutrition. In: Sims T, Sharpley AN (eds) Phosphorus: agriculture and the environment. Agronomy monograph 46. ASA/CSSA/SSSA, Madison, WI, pp 587–606

    Google Scholar 

  • Schröder J (2005) Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares the environment. Bioresour Technol 96:253–261

    PubMed  Google Scholar 

  • Séguy L, Bouzinac S, Husson O (2006) Direct-seeded tropical soil systems with permanent soil cover: learning from the Brazilian experience. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRC, Boca Raton, FL, pp 323–342

    Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    CAS  Google Scholar 

  • Sharpley AN, Withers PJA, Abdalla CW, Dodd AR (2005) Strategies for the sustainable management of phosphorus. In: Sims T, Sharpley AN (eds) Phosphorus: agriculture and the environment. Agronomy monograph 46. ASA/CSSA/SSSA, Madison, WI, pp 1069–1101

    Google Scholar 

  • Smestad TB, Tiessen H, Buresh RJ (2002) Short fallows of Tithonia diversifolia and Crotalaria grahamiana for soil fertility improvement in western Kenya. Agrofor Syst 55:181–194

    Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Stewart JWB, Sharpley AN (1987) Controls on dynamics of soil and fertilizer phosphorus and sulfur. In: Follett RF, Stewart JWB, Cole CV (eds) Soil fertility and organic matter as critical components of production systems. SSSA Special Publication 19. American Society of Agronomy, Madison, WI, pp 101–121

    Google Scholar 

  • Tan ZX, Lal R, Wiebe KD (2005) Global soil nutrient depletion and yield reduction. J Sustain Agric 26:123–146

    Google Scholar 

  • Tiessen H, Ballester MV, Salcedo I (2011) Phosphorus and global change. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_18

  • Tittonell P, Corbeels M, Van Wijk MT, Vanlauwe B, Giller KE (2008) Combining organic and mineral fertilizers for integrated soil fertility management in smallholder farming systems of Kenya: explorations using the crop-soil model FIELD. Agron J 100:1511–1526

    CAS  Google Scholar 

  • Tiunov AV, Bonkowski M, Alphei J, Scheu S (2001) Microflora, protozoa and nematoda in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia 45:46–60

    Google Scholar 

  • Toor GS, Hunger S, Peak JD, Sims JT, Sparks DL, Donald LS (2006) Advances in the characterization of phosphorus in organic wastes: environmental and agronomic applications. Adv Agron 89:1–72

    Google Scholar 

  • Turner BL, Driessen JP, Haygarth PM, McKelvie ID (2003) Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biol Biochem 35:187–189

    CAS  Google Scholar 

  • UNPP (2008) World population prospects: the 2008 revision. United Nations Population Division, New York

    Google Scholar 

  • van der Eijk D, Janssen BH, Oenema O (2006) Initial and residual effects of fertilizer phosphorus on soil phosphorus and maize yields on phosphorus fixing soils – a case study in south-west Kenya. Agric Ecosyst Environ 116:104–120

    Google Scholar 

  • Vanlauwe B, Sanginga N, Merckx R (1998) Recovery of leucaena and dactyladenia residue nitrogen-15 in alley cropping systems. Soil Sci Soc Am J 62:454–460

    CAS  Google Scholar 

  • Vanlauwe B, Diels J, Sanginga N, Carsky RJ, Deckers J, Merckx R (2000a) Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by maize to previous herbaceous legume cropping and rock phosphate treatments. Soil Biol Biochem 32:2079–2090

    CAS  Google Scholar 

  • Vanlauwe B, Nwoke OC, Diels J, Sanginga N, Carsky RJ, Deckers J, Merckx R (2000b) Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by Mucuna pruriens, Lablab purpureus and maize. Soil Biol Biochem 32:2063–2077

    CAS  Google Scholar 

  • Vanlauwe B, Tittonell P, Mukalama J (2006) Within-farm soil fertility gradients affect response of maize to fertiliser application in western Kenya. Nutr Cycl Agroecosyst 76:171–182

    CAS  Google Scholar 

  • Vanlauwe B, Idrissa A, Diels J, Sanginga N, Merckx R (2008) Plant age and rock phosphate effects on the organic resource quality of herbaceous legume residues and their N and P release dynamics. Agron Sustain Dev 28:429–437

    CAS  Google Scholar 

  • Vanlauwe B, Bationo A, Chianu J, Giller KE, Mercks R, Mokwunye U, Ohiokpehai O, Pypers P, Tabo R, Shepherd K, Smaling E, Woomer PL, Sanginga N (2010) Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agric 39:17–24

    Google Scholar 

  • Weisskopf L, Akello P, Milleret R, Khan Z, Schulthess F, Gobat J-M, Le Bayon R-C (2009) White lupin leads to increased maize yield through a soil fertility-independent mechanism: a new candidate for fighting Striga hermonthica infestation? Plant Soil 319:101–114

    CAS  Google Scholar 

  • Wells AT, Chan KY, Cornish PS (2000) Comparison of conventional and alternative vegetable farming systems on the properties of a yellow earth in New South Wales. Agric Ecosyst Environ 80:47–60

    Google Scholar 

  • Wichern F, Muller T, Joergensen RG, Buerkert A (2004) Effects of manure quality and application forms on soil C and N turnover of a subtropical oasis soil under laboratory conditions. Biol Fertil Soils 39:165–171

    Google Scholar 

  • Wichern F, Mayer J, Joergensen RG, Muller T (2007) Release of C and N from roots of peas and oats and their availability to soil microorganisms. Soil Biol Biochem 39:2829–2839

    CAS  Google Scholar 

  • Yusuf AA, Iwuafor ENO, Abaidoo RC, Olufajo OO, Sanginga N (2009) Grain legume rotation benefits to maize in the northern Guinea savanna of Nigeria: fixed-nitrogen versus other rotation effects. Nutr Cycl Agroecosyst 84:129–139

    CAS  Google Scholar 

  • Zibilske LM, Bradford JM (2003) Tillage effects on phosphorus mineralization and microbial activity. Soil Sci 168:677–685

    CAS  Google Scholar 

  • Zingore S, Delve RJ, Nyamangara J, Giller KE (2008) Multiple benefits of manure: the key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms. Nutr Cycl Agroecosyst 80:267–282

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Jan Jansa (ETH Zurich) and two reviewers for their helpful comments on our chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Oberson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Oberson, A., Pypers, P., Bünemann, E.K., Frossard, E. (2011). Management Impacts on Biological Phosphorus Cycling in Cropped Soils. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_17

Download citation

Publish with us

Policies and ethics