Skip to main content

Ewens Measures on Compact Groups and Hypergeometric Kernels

  • Chapter
  • First Online:
Séminaire de Probabilités XLIII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2006))

Abstract

On unitary compact groups the decomposition of a generic element into product of reflections induces a decomposition of the characteristic polynomial into a product of factors. When the group is equipped with the Haar probability measure, these factors become independent random variables with explicit distributions. Beyond the known results on the orthogonal and unitary groups (O(n) and U(n)), we treat the symplectic case. In U(n), this induces a family of probability changes analogous to the biassing in the Ewens sampling formula known for the symmetric group. Then we study the spectral properties of these measures, connected to the pure Fisher-Hartvig symbol on the unit circle. The associated orthogonal polynomials give rise, as n tends to infinity to a limit kernel at the singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Andrews, G.E., Askey, R.A., Roy, R.: Special functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Arratia, R., Barbour, A.D., Tavaré, S.: Logarithmic combinatorial structures: a probabilistic approach. EMS Monographs in Mathematics, vol. 1. European Mathematical Society Publishing House, Zürich (2003)

    Google Scholar 

  4. Askey, R.A. (ed.): Gabor Szegö: Collected papers, vol. I. Birkhäuser, Basel (1982)

    Google Scholar 

  5. Basor, E.L., Chen, Y.: Toeplitz determinants from compatibility conditions. Ramanujan J. 16, 25–40 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blower, G. Random matrices: high dimensional phenomena. London Mathematical Society Lecture Note Series, vol. 367. Cambridge University Press (2009)

    Google Scholar 

  7. Borodin, A., Olshanski, G.: Infinite random matrices and Ergodic measures. Commun. Math. Phys. 203, 87–123 (2001)

    Article  MathSciNet  Google Scholar 

  8. Borodin, A., Deift, P.: Fredholm determinants, Jimbo-Miwa-Ueno-functions, and representation theory. Commun. Pure Appl. Math. 55, 1160–1230 (2005)

    Article  MathSciNet  Google Scholar 

  9. Böttcher, A., Silbermann, B.: Toeplitz matrices and determinants with Fisher-Hartwig symbols. J. Funct. Anal. 63(2), 178–214 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgade, P., Hughes, C.P., Nikeghbali, A., Yor, M.: The characteristic polynomial of a random unitary matrix: a probabilistic approach. Duke Math. J. 145(1), 45–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgade, P.: Conditional Haar measures on classical compact groups. Ann. Probab. 37(4), 1566–1586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourgade, P., Nikeghbali, A., Rouault, A.: Circular Jacobi ensembles and deformed Verblunski coefficients. Int. Math. Res. Not. 2009(23), 4357–4394 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Bourgade, P.: A propos des matrices alatoires et des fonctions L. Thesis, ENST Paris (2009) available online at http://tel.archives-ouvertes.fr/tel-00373735/fr/http://tel.archives-ouvertes.fr/tel-00373735/fr/

  14. Cohen, A.M.: Finite quaternionic reflection groups. J. Algebra 64(2), 293–324 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diaconis, P., Shahshahani, M.: The subgroup algorithm for generating uniform random variables. Probab. Eng. Inform. Sci. 1, 15–32 (1987)

    Article  MATH  Google Scholar 

  16. Forrester, P.J.: Log-Gases and Random Matrices, Book available online at http://www.ms.unimelb.edu.au/~matpjf/matpjf.htmlhttp://www.ms.unimelb.edu.au/~matpjf/matpjf.html

  17. Hambly, B.M., Keevash, P., O’Connell, N., Stark, D.: The characteristic polynomial of a random permutation matrix. Stoch. Process. Appl. 90, 335–346 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hua, L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Science Press, Peking (1958) Transl. Math. Monographs 6, Am. Math. Soc., 1963.

    Google Scholar 

  19. Katz, N.M., Sarnak, P.: Random Matrices, Frobenius Eigenvalues and Monodromy American Mathematical Society, vol. 45. Colloquium Publications (1999)

    Google Scholar 

  20. Katz, N.M., Sarnak, P.: Zeros of zeta functions and symmetry. Bull. Am. Soc. 36, 1–26 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Keating, J.P., Snaith, N.C.: Random matrix theory and \(\zeta (1/2 + it)\). Commun. Math. Phys. 214, 57–89 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Levin, E., Lubinsky, D.: Universality limits involving orthogonal polynomials on the unit circle, Comput. Meth. Funct. Theory 7, 543–561 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Lubinsky, D.: Mutually Regular Measures have Similar Universality Limits. In: Neamtu, M., Schumaker, L.(eds.) Proceedings of 12th Texas Conference on Approximation Theory, pp. 256–269. Nashboro Press, Nashville (2008)

    Google Scholar 

  24. Mezzadri, F.: How to generate random matrices from the classical compact groups. Notices Am. Math. Soc. 54(5), 592–604 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Najnudel, J., Nikeghbali, A., Rubin, F.: Scaled limit and rate of convergence for the largest Eigenvalue from the generalized Cauchy random matrix ensemble. J. Stat. Phys. 137 (2009)

    Google Scholar 

  26. Neretin, Yu.A.: Hua type integrals over unitary groups and over projective limits of unitary groups. Duke Math. J. 114, 239–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pickrell, D.: Measures on infinite-dimensional Grassmann manifolds. J. Funct. Anal. 70(2), 323–356 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pickrell, D.: Mackey analysis of infinite classical motion groups. Pacific J. Math. 150, 139–166 (1991)

    MathSciNet  MATH  Google Scholar 

  29. Pitman, J.: Combinatorial stochastic processes. Ecole d’Et de Probabilits (Saint-Flour, 2002), Lecture Notes in Mathematics, vol. 1875. Springer, (2006)

    Google Scholar 

  30. Rambour, Ph., Seghier, A.: Comportement asymptotique des polynmes orthogonaux associes un poids ayant un zro d’ordre fractionnaire sur le cercle. Applications aux valeurs propres d’une classe de matrices alatoires unitaires, http://arxiv.org/PS_cache/arxiv/pdf/0904/0904.0777v2.pdfarXiv:math.FA/0904/0904.0777v2 (2009)

  31. Simon, B.: The Christoffel–Darboux kernel, In: “Perspectives in PDE, Harmonic Analysis and Applications,” a volume in honor of V.G. Maz’ya’s 70th birthday, Proceedings of Symposia in Pure Mathematics, vol. 79, pp. 295–335 (2008)

    Google Scholar 

  32. Tsilevich, N.V.: Distribution of cycle lengths of infinite permutations. Zap. Nauchn. Sem. (POMI), 223, 148–161, 339 (1995). Translation in J. Math. Sci. 87(6), 4072–4081 (1997)

    Google Scholar 

  33. Wieand, K.: Permutation matrices, wreath products, and the distribution of eigenvalues. J. Theor. Probab. 16, 599–623 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Witte, N.S., Forrester, P.J.: Gap probabilities in the finite and scaled Cauchy random matrix ensembles. Nonlinearity, 13, 1965–1986 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

A.N.’s work is supported by the Swiss National Science Foundation (SNF) grant 200021_119970/1.

A.R’s work is partly supported by the ANR project Grandes Matrices Alatoires ANR-08-BLAN-0311-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Rouault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bourgade, P., Nikeghbali, A., Rouault, A. (2011). Ewens Measures on Compact Groups and Hypergeometric Kernels. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLIII. Lecture Notes in Mathematics(), vol 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15217-7_15

Download citation

Publish with us

Policies and ethics