Skip to main content

A Conceptual Framework for Up-Scaling Ecological Processes and Application to Ectomycorrhizal Fungi

  • Chapter
  • First Online:
Diversity and Biotechnology of Ectomycorrhizae

Part of the book series: Soil Biology ((SOILBIOL,volume 25))

Abstract

After reviewing the limits of the current approaches, we introduce an analytical framework for up-scaling analyses of ecological processes. The framework attempts to produce a conceptual unification and leads to a ten-step approach for up-scaling from a source to a target scale. The literature on ectomycorrhizal fungi is then screened following each up-scaling step. We conclude that one needs to construct four (pseudo) hierarchical levels in order to understand the ecological role of ectomycorrhizal fungi in the ecological productivity of ecosystems (scale of 104-105 m2) and one more level, if one is interested in evolutionary processes such as gene flow or speciation. The modularization scales for understanding the role of ectomycorrhizal fungi are those applicable to bacteria (10-6-10-4 m2), fungi (functional dynamic modules occupying surfaces of tenths of m2, and a tree plot of 400–900m2), epigeous fungivorous invertebrates and mammals (104-106 m2), and, for speciation, to small catchments of several hundreds of km2. The analyses showed that the source for up-scaling has to be a plot of 400–900m2. This plot has an associated homomorphic model with a maximum number of nine functional dynamic modules for the structural and functional modeling of ectomycorrhizal communities. Only one modeling step is needed for up-scaling from the source scale (plot) to the ecosystem scale, but the model’s construction involves the previous construction of several up- and down-scaling models in order to quantify the effects of smaller- and larger scale organisms on fungi. The existing knowledge limits the up-scaling of processes, especially with respect to the available mathematical models, which in turn are limited by the data required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R, Gőttlein A (2003) Correlations between projection area of ectomycorrhizae and H2O extractable nutrients in organic soil layers. Mycol Prog 2:45–52

    Google Scholar 

  • Agerer R, Weiss M (1989) Studies on ectomycorrhizae. XX. Mycorrhizae formed by Thelephora terrestris on Norway spruce. Mycologia 81:444–453

    Google Scholar 

  • Allen MF, Vargas R, Graham E, Swenson W, Hamilton M, Taggart M, Harmon TC, Rat’ko A, Rundel P, Fulkerson B, Estrin D (2007) Soil sensor technology: life within a pixel. Bioscience 57:859–867

    Google Scholar 

  • Allison SD, Garner TB, Holland K, Weintraub M, Sinsabaugh RL (2007) Soil enzymes. Linking proteomics and ecological processes. In: Hurst CJ et al (eds) Manual of environmental microbiology, 3rd edn. American Society for Microbiology, Washington D.C., pp 704–711

    Google Scholar 

  • Amaranthus MP, Perry DA (1994) The functioning of ectomycorrhizal fungi in the field: linkanges in space and time. Plant Soil 159:133–140

    Google Scholar 

  • Amend A, Garbelotto M, Fang Z, Keeley S (2010) Isolation by landscape in populations of a prized edible mushroom Tricholoma matsutake. Conserv Genet 11(3):795–802

    Google Scholar 

  • Baier R, Ingenhagg J, Blaschke H, Gőttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206

    PubMed  Google Scholar 

  • Bailey RG (1987) Suggested hierarchy of criteria for multiscale ecosystem mapping. Landsc Urban Plan 14:313–319

    Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random network. Science 286:509–512

    PubMed  Google Scholar 

  • Barabasi AL, Bonabeau E (2003) Scale-free networks. Sci Am 288:50–59

    Google Scholar 

  • Beare MH, Coleman DC, Crossley DA Jr, Henddrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22

    CAS  Google Scholar 

  • Berg MP, Bengtsson J (2007) Temporal and spatial variability in soil food web structure. Oikos 116:1789–1804

    Google Scholar 

  • Bidartondo MI, Burghardt B, Gerbauer G, Bruns RD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806

    CAS  Google Scholar 

  • Bonneville S, Smits MM, Brown A, Harringston J, Leake JR, Brydson R, Benning LG (2009) Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37:615–618

    CAS  Google Scholar 

  • Bruns TD, Kennedy PG (2009) Individuals, populations, communities and function: the growing field of ectomycorrhizal ecology. New Phytol 182:12–14

    PubMed  Google Scholar 

  • Bruns TD, Bidartondo MI, Taylor L (2002a) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol 42:352–359

    PubMed  Google Scholar 

  • Bruns TD, Tan J, Bidartondo M, Szaro T, Redecker D (2002b) Survival of Suillus pungens and Amanita francheti ectomycorrhizal genets was rare or absent after a stand-replacing wildfire. New Phytol 155:517–523

    Google Scholar 

  • Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Google Scholar 

  • Cairney JWG, Bastias BA (2007) Influences of fire on forest soil fungal communities. Can J For Res 37:207–215

    Google Scholar 

  • Calvaruso C, Turpault MP, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the fnctional diversity od soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54:567–577

    PubMed  Google Scholar 

  • Carrey AB, Harrington CA (2001) Small mammal in young forests: implications for management and sustainability. For Ecol Manag 154:289–309

    Google Scholar 

  • Claridge AW, Trappe JM, Hansen K (2009) Do fungi have a role as soil stabilizers and remediators after forest fire? For Ecol Manag 257:1063–1069

    Google Scholar 

  • Colpaert JV (2008) Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi. In: Avery S et al (eds) Stress in yeasts and filamentous fungi. Elsevier, London, pp 157–173

    Google Scholar 

  • Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomychorrhiza communities in two forest soil using multiple enzymatic tests. New Phytol 167:309–319

    PubMed  CAS  Google Scholar 

  • Courty PE, Franc A, Pierrat JC, Garbaye J (2008) Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74: 5792–5801

    PubMed  CAS  Google Scholar 

  • Coutts MP, Nicoll BC (1990) Growth and survival of shoots, roots and mycorrhizal mycelium in clonal Sitka spruce during the first growing season after planting. Can J For Res 20:861–868

    Google Scholar 

  • Cudlin P, Kieliszewska-Rojucka B, Rudawska M, Grebenc T, Alberton O, Lehto T, Bakker MR, Borja I, Konopka B, Leski T, Kraigher H, Kuyper TW (2007) Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosyst 141:406–425

    Google Scholar 

  • Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562

    Google Scholar 

  • Darwin C (1859) Origin of species. John Murray, London

    Google Scholar 

  • Dell B (2002) Role of mycorrhizal fungi in ecosystems. CMU J 1:47–60

    Google Scholar 

  • Dengler J (2009a) A flexible multi-scale approach for standardized of plant species richness patterns. Ecol Indic 9:1169–1178

    Google Scholar 

  • Dengler J (2009b) Which function describes the species-area relationship best? A review and empirical evaluation. J Biogeogr 36:728–744

    Google Scholar 

  • Diaz S (1996) Effects of elevated [CO2] at the community level mediated by root symbionts. Plant Soil 187:309–320

    CAS  Google Scholar 

  • Dickie IA, Bing Xu, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    CAS  Google Scholar 

  • Dighton J (2003) Fungi in ecosystem processes. Marcel Dekker, New York

    Google Scholar 

  • Douhan GW, Rizzo DM (2005) Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol 166:263–271

    PubMed  CAS  Google Scholar 

  • Esher RJ, Marx DH, Ursic J, Baker RL, Brown LR, Coleman DC (1992) Simulated acid rain effects on fine roots, ectomycorrhizae, microorganisms, and invertebrates in pine forests of the Southern United States. Water Air Soil Pollut 61:269–278

    CAS  Google Scholar 

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17(4):177–183

    Google Scholar 

  • Fitzsimons MS, Miller RM, Jastrow JD (2008) Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158:117–127

    PubMed  Google Scholar 

  • Fortin MJ, Olsol RJ, Ferson S, Iverson L, Hunsaker C, Edwards G, Levine D, Butera K, Klemas V (2000) Issues related to the detection of boundaries. Landsc Ecol 15:453–466

    Google Scholar 

  • Fujimura KE, Egger KN, Henry GH (2008) The effect of experimental warming on the root-associated fungal community of Salix arctica. ISME J 2:105–114

    PubMed  CAS  Google Scholar 

  • Gaston KJ, Chown SL, Calosi P, Bernardo J, Bilton DT, Clarke A, Trullas SC, Ghalambo CK, Konarzewsk M, Peck LS, Porter WP, Pörtner HO, Rezende EL, Schulte PM, Spicer JI, Stillman JH, Terblanche JS, van Kleunen M (2009) Macrophysiology: a conceptual reunification. Am Nat 174:595–612

    PubMed  Google Scholar 

  • Gebhardt S, Wőllecke J, Műnzenberger B, Hűttl RF (2009) Microscale spatial distribution patterns of red oak (Quercus rubra L.) ectomycorrhizae. Mycol Prog 8:245–257

    Google Scholar 

  • Gehring C, Bennett A (2009) Mycorrhizal fungal-plant-insect interactions: the importance of a community approach. Environ Entomol 38(1):93–102

    PubMed  Google Scholar 

  • Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390

    PubMed  Google Scholar 

  • Gherghel F (2009) ldentification and characterization of Quercus robur ectomycorrhiza in relation to heavy metal contamination. Dissertation, Friedrich Schiller University, Jena, Germany

    Google Scholar 

  • Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J Ecol 94:1176–1191

    CAS  Google Scholar 

  • Godbold DL (2005) Ectomycorrhizal community structure: linking biodiversity to function. Prog Bot 66:374–391

    Google Scholar 

  • Godbold DL, Berntson GM (1997) Elevated atmospheric CO2 concentration changes ectomycorrhizal morphotype assamblages in Betula papyrifera. Tree Physiol 17:347–350

    PubMed  Google Scholar 

  • Godbold DL, Berntson GM, Bazzaz FA (1997) Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytol 137:433–440

    CAS  Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Andrea P, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24

    CAS  Google Scholar 

  • Goodman DM, Trofymov VA (1998) Distribution of ectomycorrhizas in micro-habitats in mature and old-growth stands of Douglas-fir on southeastern Vancouver Island. Soil Biol Biochem 30:2127–2138

    CAS  Google Scholar 

  • Graham JH (2008) Scaling-up evaluation of field functioning of arbuscular mycorrhizal fungi. New Phytol 180:1–2

    PubMed  Google Scholar 

  • Graham JH, Miller RM (2005) Mycorrhizas: gene to function. Plant Soil 274:79–100

    CAS  Google Scholar 

  • Grebenc T, Christensen M, Vilhar U, Cater M, Martin MP, Simoncic P, Kraingher H (2009) Response of ectomycorrhizal community structure to gap opening in natural and managed temperate beech-dominated forests. Can J For Res 39:1375–1386

    Google Scholar 

  • Griffiths RP, Bradshaw GA, Marks B, Lienkaemper GW (1996) Spatial distribution of ectomycorrhizal mats in coniferous forests of the Pacific Northwest, USA. Plant Soil 180:147–158

    CAS  Google Scholar 

  • Hall IR, Yun W, Amicucci A (2003) Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol 21:433–438

    PubMed  CAS  Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2001) Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93:1186–1194

    Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319

    CAS  Google Scholar 

  • Hasselquist NJ, Vargas R, Allen MF (2009) Using soil sensing technology to examine interactions and controls between ectomycorrhizal growth and environmental factors on soil CO2 dynamics. Plant Soil. doi:10.1007/s11104-009-0183-y

    Google Scholar 

  • Heneghan L, Miller SP, Baer S, Callaham MA Jr, Montgomery J, Pavao-Zuckerman M, Rhoades CC, Richardson S (2008) Integrating soil ecological knowledge into restoration management. Restor Ecol 16:608–617

    Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    CAS  Google Scholar 

  • Hiol Hiol F, Dixon RK, Curl EA (2004) The feeding preference of mycophagous collembola varies with the ectomycorrhizal symbiont. Mycorrhiza 5:99–103

    Google Scholar 

  • Hirose D, Kikuchi J, Kanzaki N, Kazuyoshi F (2004) Genet distribution of sporocarps and ectomycorrhizas of Suillus pictus in a Japanese white plantation. New Phytol 164:527–541

    Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    PubMed  CAS  Google Scholar 

  • Horton TR, Molina R, Hood K (2005) Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15:393–403

    PubMed  CAS  Google Scholar 

  • Hubert NA, Gehring CA (2008) Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone. Mycorrhiza 18:363–374

    PubMed  Google Scholar 

  • Hutchings MJ, Bradbury IK (1986) Ecological perspectives on clonal perennial herbs. Bioscience 36:178–182

    Google Scholar 

  • Iordache V (2004) The constitution from the point of view of human ecology (in Romanian), Sfera Politicii 106:29–32. http://www.sferapoliticii.ro/sfera/pdf/Sfera_106.pdf

  • Iordache V (2009a) The general concept of evolution. In Staicu L (ed) Rationality and evolution – philosophical exploration of complexity. Bucharest University Press, Bucharest, pp 83–155 (in Romanian)

    Google Scholar 

  • Iordache V (2009b) Darwin’s law of growth with reproduction in the Origin of Species: law of nature or hidden teleologic principle? Communication at the Conference “Darwin, the evolution of species and the evolutionary thinking”, 20–22 Nov 2009. University of Bucharest, Romania

    Google Scholar 

  • Iordache V, Bodescu F (2005) Emergent properties of the Lower Danube River System: consequences for the integrated monitoring system. Arch Hydrobiol Suppl Large Rivers 158: 95–128

    Google Scholar 

  • Iordache V, Gherghel F, Kothe E (2009a) (2009b) Assessing the effect of disturbances on diversity of ectomycorrhiza. Int J Environ Res Public Health 6:414–432

    PubMed  Google Scholar 

  • Iordache V, Ion S, Pohoata A (2009b) Integrated modeling of metals biogeochemistry: potential and limits. Chem Erde-Geochem 69:125–169

    CAS  Google Scholar 

  • Iordache V, Lacatusu R, Scradeanu D, Onete M, Purice D, Cobzaru I (2011) Scale-specific mechanisms of metals distribution and mobility in contaminated areas. In: Kothe E, Varma A (eds) Bio-geo-interactions in contaminated soils, Springer, in preparation

    Google Scholar 

  • Izzo A, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytol 166:619–630

    PubMed  Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Ann Rev Plant Biol 59:341–363

    CAS  Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    CAS  Google Scholar 

  • Johnson CN (1996) Interactions between mammals and ectomycorrhizal fungi. Trends Ecol Evol 11:503–507

    PubMed  CAS  Google Scholar 

  • Johnson D, Krsek M, Wellington EMH, Stott AW, Cole L, Bardgett RD, Read DJ, DJ JR, Leake JR (2005) Soil invertebrates disrupt carbon flow through fungal networks. Science 309:1047

    PubMed  CAS  Google Scholar 

  • Johnson CN, Hoeksema JD, Bever JD, Chaudhary VB, Gehring C, Klironomos J, Koide R, Miller RM, Moore J, Moutoglis P, Schwartz M, Simard S, Swenson W, Umbanhowar J, Wilson G, Zabinski C (2006) From lilliput to brobdingnag: extending models of mycorrhizal function across scales. Bioscience 56:889–900

    Google Scholar 

  • Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422

    Google Scholar 

  • Karst J, Marczak L, Jones MD, Turkington R (2008) The mutual-parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysis. Ecology 89:1032–1042

    PubMed  Google Scholar 

  • Kjoller R (2006) Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. Microbiol Ecol 58:214–224

    Google Scholar 

  • Kjoller R, Clemmensen KE (2009) Belowground ectomycorrhizal fungal community respond to liming in three southern Swedish coniferous forest stands. For Ecol Manag 257:2217–2225

    Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF (1999) Designing belowground field experiments with the help of semi-variance and power analyses. Appl Soil Ecol 12:227–238

    Google Scholar 

  • Koele N, Turpault MP, Hildebrand EE, Uroz S, Frey-Klett P (2009) Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: budget analysis and bacterial quantification. Soil Biol Biochem 41:1935–1942

    CAS  Google Scholar 

  • Koide RT, Xu B, Sharda J (2005) Contrasting below-ground views of an ectomycorrhizal fungal community. New Phytol 166:251–262

    PubMed  Google Scholar 

  • Koide RT, Shumway DL, Xu B, Sharda J (2007) On temporal partitioning of a community of ectomicorrhizal fungi. New Phytol 174:420–429

    PubMed  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    PubMed  Google Scholar 

  • Kozdrój K, Piotrowska-Seget Z, Krupa P (2007) Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd (II) impact. Ecotoxicology 16:449–456

    PubMed  Google Scholar 

  • Kranabetter JM, Durall DM, MacKenzie WH (2009) Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Mycorrhiza 19:99–111

    PubMed  CAS  Google Scholar 

  • Krpata D, Peintner U, Langer I, Fitz WJ, Schweiger P (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res 112:1069–1079

    PubMed  Google Scholar 

  • Krpata D, Fitz WJ, Peintner U, Langer I, Schweiger P (2009) Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution. Environ Pollut 157:280–286

    PubMed  CAS  Google Scholar 

  • Lamour A, Termorshuizen AJ, Volker D, Michael JJ (2007) Network formation by rhizomorphs of Amillaria lutea in natural soil: their description and ecological significance. FEMS Microbiol Ecol 62:222–232

    PubMed  CAS  Google Scholar 

  • Landeweert R, Leeflang P, Kuyper TW, Hoffland E, Rosling A, Wernars K, Smit E (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327–333

    PubMed  CAS  Google Scholar 

  • Leake JR, Cameron DD (2010) Physiological ecology of mycoheterotrophy. New Phytol 185:601–605

    PubMed  CAS  Google Scholar 

  • Lepczyk CA, Lortie CJ, Anderson LJ (2008) An ontology for landscapes. Ecol Complex 5: 272–279

    Google Scholar 

  • Lewis JD, Thomas RB, Strain BR (1994) Effect of elevated CO2 on mycorrhizal colonization of loblolly pine (Pinus taedaL.) seedlings. Plant Soil 165:81–88

    CAS  Google Scholar 

  • Lewis JD, Licitra J, Tuininga AR, Sirulnik A, Turner GD, Johnson J (2008) Oak seedling growth and ectomycorrhizal colonization are less in eastern hemlock stands infested with hemlock woolly adelgid than in adjacent oak stands. Tree Physiol 28:629–636

    PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungal, Tomentella sublilacina, via soil food webs. Mycologia 97:762–769

    PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD, Horton TR, Taylor DL, Grogan P (2004) Detection of forest stand-level spatial structure in ectomicorrhizal fungal communities. FEMS Microbiol Ecol 49:319–332

    PubMed  CAS  Google Scholar 

  • Lischke L, Löffler TJ, Thornton PE, Zimmermann NE (2006) Model up-scaling in landscape research. In: Kienast F et al (eds) A changing world. Challenges for landscape research. Springer, Dordrecht, pp 259–282

    Google Scholar 

  • Liste HH, White JC (2008) Plant hydraulic lift of soil water-implications for crop production and land restoration. Plant Soil 313:1–17

    CAS  Google Scholar 

  • Lovelock CE, Wright SF, Clark DA, Ruess RW (2004) Soil stocks of glomalin produced by arbusclar mycorrhizal fungi across a tropical rain forest landscape. J Ecol 92:278–287

    CAS  Google Scholar 

  • Luck GW, Daily GC, Ehrlich PR (2003) Population diversity and ecosystem services. Trends Ecol Evol 18:331–336

    Google Scholar 

  • Maestre FT, Cortina J, Bautista S, Bellot J, Vallejo R (2003) Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semiarid degreded ecosystem. Ecosystems 6:630–643

    Google Scholar 

  • Maharning AR, Mills AAS, Adl SM (2009) Soil community changes during secondary succession to naturalized grasslands. Appl Soil Ecol 41:137–147

    Google Scholar 

  • Maijala P, Fagerstedt KV, Raudaskoski M (1991) Detection of extracellular and proteolytic activity in ectomycorrhizal fungus Heterobasidion annosum (Fr.) Bref. New Phytol 117:643–648

    CAS  Google Scholar 

  • Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insight. Curr Opin Plant Biol 12:508–515

    PubMed  CAS  Google Scholar 

  • Matsuda Y, Hayakawa N, Ito S (2009) Local and microscale distributions of Cenococcum geophilum in soil of coastal pine forests. Fungal Ecol 2:31–35

    Google Scholar 

  • Meixner H, Schnauder I, Bölscher J, Iordache V (2006) Hydraulic, sedimentological and ecological problems of multifunctional riparian forest management – RipFor Guidelines for End-Users. In: Berliner Geographische Abhandlungen, vol 66. ISBN3-88009-067-x. http://www.cesec.ro/pdf/RipForGL2006_b1.pdf

  • Miller RM, Kling M (2000) The importance of integration and scale in the arbuscular mycorrhizal symbiosis. Plant Soil 226:295–309

    CAS  Google Scholar 

  • Miller RM, Lodge DJ (1997) Fungal responses to disturbance: agriculture and forestry. In: Wicklow DT, Söderström B (eds) Environmental and microbial relationships. Springer, Berlin, pp 65–84

    Google Scholar 

  • Moore JC, St John TV, Coleman DC (1985) Ingestion of vesicular arbuscular mycorrhizal hyphae by soil microarthropods. Ecology 66:1979–1981

    Google Scholar 

  • Moore JC, McCann K, Setala H, De Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Google Scholar 

  • Moore JC, McCann K, de Ruiter PC (2007) Soil rhizosphere food webs, their stability, and implications for soil processes in ecosystems. In: Cardon ZG, White JL (eds) Rhizosphere. An ecological perspective. Academic, Burlington, MA, pp 101–126

    Google Scholar 

  • Morris AH, Smith ME, Rizzo DM, Rejmánek M, Bledsoe CS (2008) Contrasting ectomycorrhizal fungal community on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol 178:167–176

    PubMed  Google Scholar 

  • Mougin C, Boukcim H, Jolivalt C (2009) Soil bioremediation strategies based on the use of fungal enzymes. In: Singh A et al (eds) Advances in applied bioremediation. Springer, Heidelberg, pp 123–149

    Google Scholar 

  • Mudge KW, Diebolt KS, Whitlow TH (1987) Ectomycorrhizal effect on host plant response to drought stress. J Environ Hortic 5:183–187

    Google Scholar 

  • Münzenberge B, Bubner B, Wollecke J, Sieber TN, Bauer R, Fladung M, Hüttl RF (2009) The ectomycorrhizal morphotype Pinirizha sclerotia is formed by Acephalia macrosclerotium sp. nov., a close relative of Phialocephala fortinii. Mycorrhiza 19:481–492

    Google Scholar 

  • Nara K (2008) Community developmental patterns and ecological functions of ectomycorrhizal fungi: implications from primary succession. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Heidelberg, pp 581–600

    Google Scholar 

  • Neagoe A, Ebena G, Carlsson E (2005) The effect of soil amendments on plant performance in an area affected by acid mine drainage. Chem Erde-Geochem 65:115–129

    CAS  Google Scholar 

  • Neagoe A, Merten D, Iordache V, Buechel G (2009) The effect of bioremediation methods involving different degrees of soil disturbance on the export of metals by leaching and by plant uptake. Chem Erde-Geochem 69(S2):57–73

    CAS  Google Scholar 

  • Nilsson LO, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduces in response to nitrogen fertilization. New Phytol 158: 409–416

    Google Scholar 

  • O’Neill RV (1996) Recent developments in ecological theory: hierarchy and scale. In: Scott JM et al (eds) Gap analysis: a landscape approach to biodiversity planning. American Society for Photogrammetry Remote Sensing, Bethesda, MD, pp 7–14

    Google Scholar 

  • O’Neill RV (2001) Is it time to burry the ecosystem concept? Ecology 82:3275–3284

    Google Scholar 

  • O’Neill EG, O’Neill RV, Norby RJ (1991) Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environ Pollut 73:271–284

    PubMed  Google Scholar 

  • Pahl-Vostl C (1995) The dynamic nature of ecosystems. Wiley, New York

    Google Scholar 

  • Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M (2007) A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhzal fungi. Ecol Lett 10:470–480

    PubMed  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2008) Fungal community ecology: a hybrid beast with a molecular master. Bioscience 58:799–810

    Google Scholar 

  • Peay KG, Garbelotto M, Bruns TD (2009) Spore heat resistence plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J Ecol 97:537–547

    Google Scholar 

  • Pickles BJ, Genney D, Anderson IC, Alexander IJ (2009) Spatial ecology of ectomycorrhizas: analytical strategies. In: Azcón-Aguilar C et al (eds) Mycorrhizas – functional processes and ecological impact. Springer, Berlin, pp 155–165

    Google Scholar 

  • Porter J, Arzberger P, Braun HW, Bryant P, Gage S, Hansen T, Hanson P, Lin CC, Lin FP, Kratz T, Michener W, Shapiro S, Williams T (2005) Wireless sensor networks for ecology. Bioscience 55:561–572

    Google Scholar 

  • Porter JH, Nagy E, Kratz TT, Hanson P, Scott L, Collins SI, Arzberger P (2009) New eyes on the world: advanced sensors for ecology. Bioscience 59:385–397

    Google Scholar 

  • Price GR (1995) The nature of selection. J Theor Biol 175:389–396

    PubMed  CAS  Google Scholar 

  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Oren R (2008) Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during 5 years of free-air-CO2-enrichment. Glob Chang Biol 14:1252–1264

    Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492

    Google Scholar 

  • Redecker D, Szaro TM, Rand B, Bruns TD (2001) Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol Ecol 10:1025–1034

    PubMed  CAS  Google Scholar 

  • Reynolds JF, Wu J (1999) Do landscape structural and functional units exist? In: Tenhunen HD, Kabat P (eds) Integrating hydrology, ecosystem dynamics, and biogeochemistry in complex landscapes. Wiley, West Sussex, pp 273–296

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7: 740–754

    Google Scholar 

  • Rillig MC, Allen MF (1999) What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2? Mycorrhiza 9:1–8

    Google Scholar 

  • Rillig MC, Mammey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    PubMed  CAS  Google Scholar 

  • Rineau F, Garbaye J (2009) Effects of liming on ectomycorrhizal community structure in relation to soil horizons and tree hosts. Fungal Ecol 2:103–109

    Google Scholar 

  • Rineau F, Courty PE, Uroz S, Buée M, Garbaye J (2008) Simple microplate assays to measure iron mobilization and oxalate secretion by ectomycorrhizal tree roots. Soil Biol Biochem 40: 2460–2463

    CAS  Google Scholar 

  • Ritter T, Weber G, Haug I, Kotke I, Oberwinkler F (1989) Interrelationship between vitality of ectomycorrhizae and occurrence of microfungi. Ann Sci For 46(Suppl):745s–749s

    Google Scholar 

  • Robertson SJ, McGill WB, Massicotte HB, Rutherford PM (2007) Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. Biol Rev 82:213–240

    PubMed  Google Scholar 

  • Rosling A (2009) Trees, mycorrhiza and minerals-field relevance of in vitro experiments. Geobiomicrobiol J 26:389–401

    CAS  Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD, Larsson KH, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159: 775–783

    CAS  Google Scholar 

  • Rundel PW, Graham EA, Allen MF, Fisher JC, Harmon TC (2009) Environmental sensor networks in ecological research. New Phytol 182:589–607

    PubMed  Google Scholar 

  • Rygiewicz PT, Johnson MG, Ganio LM, Tingey DT, Storm MJ (1997) Lifetime and temporal occurrence of ectomycorrhizae on ponderosa pine (Pinus ponderosa Laws.) seedlings grown under varied atmospheric CO2 and nitrogen levels. Plant Soil 189:275–287

    CAS  Google Scholar 

  • Satomura T, Hashimoto Y, Kinoshita A, Horikoshi T (2006) Methods to study the role of ectomycorrhizal fungi in forest carbon cycling 1: introduction to the direct methods to quantify the fungal content in ectomicorrhizal fine roots. Root Res 15:119–124

    Google Scholar 

  • Scattolin L, Montecchio L, Mosca E, Agerer R (2008) Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands. Eur J For Res 127:347–357

    Google Scholar 

  • Schneider K, Renker C, Maraun M (2005) Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi. Mycorrhiza 16:67–72

    PubMed  Google Scholar 

  • Schroder B, Seppelt R (2006) Analysis of pattern–process interactions based on landscape models – Overview, general concepts, and methodological issues. Ecol Model 199:505–516

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Selosse MA, Richard F, Xand H, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    PubMed  Google Scholar 

  • Seppelt R, Müller F, Schröder B, Martin Volk M (2009) Challenges of simulating complex environmental systems at the landscape scale: a controversial dialogue between two cups of espresso. Ecol Model 220:3481–3489

    Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    CAS  Google Scholar 

  • Simard SW, Durall DM, Jones MD (1997) Carbon allocation and carbon transfer between Betula papyrifera and Pseudotsuga menziesii seedlings using a 13C pulse-labeling method. Plant Soil 191:41–45

    CAS  Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    CAS  Google Scholar 

  • Southworth D, He XH, Swenson W, Bledsoe CS, Horwath WR (2005) Application of network theory to potential mycorrhizal networks. Mycorrhiza 15:589–595

    PubMed  CAS  Google Scholar 

  • Staddon PL, Heinemeyer A, Fitter AH (2002) Mycorrhizas and global environmental change: research at different scales. Plant Soil 244:253–261

    CAS  Google Scholar 

  • Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300:1138–1140

    PubMed  CAS  Google Scholar 

  • Szlavecz K, McCormick MK, Xia L, Whigham D (2009) Direct and indirect effects of earthworms on mycorrhizal fungi. 94th ESA annual meeting, PS 20-177. http://eco.confex.com/eco/2009/techprogram/P19960.HTM

  • Tarkka MT, Frey-Klett P (2008) Mycorrhiza helper bacteria. In: Varma A (ed) Mycorrhiza – state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Heidelberg, pp 113–134

    Google Scholar 

  • Tedersoo L, Kőljalg U, Hallenberg N, Larsson KH (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165

    CAS  Google Scholar 

  • Thiet RK, Boerner REJ (2007) Spatial patterns of ectomycorrhizal fungal inoculum in arbuscular mycorrhizal barrens communities: implications for controlling invasion by Pinus virginiana. Mycorrhiza 17:507–517

    PubMed  Google Scholar 

  • Tingey DT, Philips DL, Johnson MG (2000) Elevated CO2 and conifer roots: effects of growth, life span, and turnover. New Phytol 147:87–103

    CAS  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    CAS  Google Scholar 

  • Treseder KK, Masiello CA, Lansing JL, Allen MF (2004) Species-specific measurements of ectomycorrhizal turnover under N-fertilization: combining isotopic and genetic approaches. Oecologia 138:419–425

    PubMed  Google Scholar 

  • Treseder KK, Allen MF, Ruess RW, Pregitzer KS, Hendrick RL (2005) Lifespans of fungal rhizomorphs under nitrogen fertilization in a pinyon-juniper woodland. Plant Soil 270:249–255

    CAS  Google Scholar 

  • Vadineanu A, Cristofor S, Iordache V (2001) Lower Danube River System biodiversity changes. In: Gopal B et al (eds) Biodiversity in wetlands: assessment. Function and conservation. Backhuys, Leiden, pp 29–63

    Google Scholar 

  • van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Vargas R, Allen MF (2008) Dynamics of fine root, fungal rhizomorphs, and soil respiration in a mixed temperature forest: integrating sensors and observation. Vadose Zone J 7:1055–1064

    Google Scholar 

  • Warren JM, Brooks JR, Meinzer FC, Eberhart JL (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394

    PubMed  CAS  Google Scholar 

  • Watkinson SC, Boddy L, Burton K, Darrah PR, Eastwood D, Fricker MD, Tlalka M (2005) New approaches to investigating the function of mycelial networks. Mycologist 19:11–17

    Google Scholar 

  • Wiensczyk Am, Gamiet S, Durall DM, Jones MD, Simard SW (2002) Ectomycorrhizae and forestry in British Columbia: a summary of current research and conservation strategies. BC J Ecosyst Manag 2. http://www.forrex.org/JEM/ISS2/vol2_no1_art6.pdf

  • Wolfe BE, Parrent JL, Koch AM, Sikes BA, Gardes M, Klironomos JN (2009) Spatial heterogeneitiy of mycorrhizal populations and communities: scales and mechanisms. In: Azcón-Aguilar C et al (eds) Mycorrhizas – functional processes and ecological impact. Springer, Heidelberg, pp 167–186

    Google Scholar 

  • Wong MTF, Asseng S (2006) Determining the causes of spatial and temporal variability of wheat yields at sub-field scale using a new method of upscaling a crop model. Plant Soil 283:203–215

    CAS  Google Scholar 

  • Yarrow MM, Marin VH (2007) Toward conceptual cohesiveness: a historical analyses of the theory and utility of ecological boundaries and transition zones. Ecosystems 10:462–476

    Google Scholar 

  • Zhou JZ, Kang S, Schadt CW, Garten CT (2008) Spatial scaling of functional gene diversity across various microbial taxa. Proc Natl Acad Sci USA 105:7768–7773

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We warmly thank Professor Mahendra Rai for providing the opportunity to prepare this text, and a native English speaker for checking the language. The research leading to the results presented here was supported by German program DAAD (research visit awarded to the first author), the Romanian agencies UEFISCSU (project MECOTER code 1006 nr. 291/2007), CNMP (projects FITORISC 31012/2007, and PECOTOX 31043/2007), and the European program FP7 (project UMBRELLA nr. 226870 Grant Agreement 090528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgil Iordache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Iordache, V., Kothe, E., Neagoe, A., Gherghel, F. (2011). A Conceptual Framework for Up-Scaling Ecological Processes and Application to Ectomycorrhizal Fungi. In: Rai, M., Varma, A. (eds) Diversity and Biotechnology of Ectomycorrhizae. Soil Biology, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15196-5_12

Download citation

Publish with us

Policies and ethics