Skip to main content

Remote Sensing of Terrestrial Clouds from Space using Backscattering and Thermal Emission Techniques

  • Chapter
  • First Online:
The Remote Sensing of Tropospheric Composition from Space

Abstract

Clouds play a crucial role in the remote sensing of the troposphere as they frequently obscure the radiation reflected or emitted from the surface. However they can be used to advantage to obtain concentration profile information with techniques such as cloud slicing. Treating clouds correctly is therefore an essential part of any retrieval of tropospheric data. The retrieval of cloud parameters from solar back scatter and thermal infrared radiation provides particular information about clouds. Chapter 5 describes the retrieval of the major cloud parameters and their validation, as well as dealing with modern trends and likely developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman, S., K. Strabala, W. Menzel, R. Frey, C. Moeller, and L. Gumley, 1998, Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32141–32157.

    Article  Google Scholar 

  • Arking, A., and J. D. Childs, 1985, Retrieval of cloud cover parameters from multispectral satellite images, J. Appl. Meteorol., 24, 323–333.

    Google Scholar 

  • Barker, H. W., 2008, Overlap of fractional cloud for radiation calculations in GCMs: A global analysis using CloudSat and CALIPSO data, J. Geophys. Res., 113, doi:10.1029/2007JD009677.

  • Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, 2000, Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. II. Cloud thermodynamic phase. J. Geophys. Res., 105, 11781–11792.

    Article  Google Scholar 

  • Bréon, F., and P. Goloub, 1998, Cloud droplet effective radius from spaceborne polarization measurements, Geophys. Res. Lett., 25, 1879–1882.

    Article  Google Scholar 

  • Brinkman, R. T., 1968, Rotational Raman scattering in planetary atmospheres, Astrophys. J., 15, 1087–1093.

    Article  Google Scholar 

  • de Beek, R., M. Vountas, V. V. Rozanov, A. Richter, and J. P. Burrows, 2001, The ring effect in the cloudy atmosphere, Geophys. Res. Lett., 28, 721–724.

    Article  Google Scholar 

  • Dessler, A. E., S. P. Palm, and J. D. Spinhirne, 2006, Tropical cloud-top height distributions revealed by the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS), J. Geophys. Res., 111, D12215, doi:10.1029/2005JD006705.

    Article  Google Scholar 

  • Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Sèze, 2000, Cloud thermodynamical phase classification from the POLDER spaceborne instrument, J. Geophys. Res., 105, 14747–14759.

    Article  Google Scholar 

  • Grenier, P., J. Blanchet, and R. Muñoz-Alpizar, 2009, Study of polar thin ice clouds and aerosols seen by CloudSat and CALIPSO during midwinter 2007, J. Geophys. Res., 114, D09201, doi:10.1029/2008JD010927.

  • Grzegorski, M., M. Wenig, U. Platt, P. Stammes, N. Fournier, and T. Wagner, 2006, The Heidelberg iterative cloud retrieval utilities (HICRU) and its application to GOME data, Atmos. Chem. Phys., 6, 4461–4476.

    Article  Google Scholar 

  • Haladay, T., and G. Stephens, 2009, Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations, J. Geophys. Res., 114, doi:10.1029/2008JD010675.

    Google Scholar 

  • Han, Q., W. B. Rossow, and A. Lacis, 1994, Near-global survey of effective droplet radius in liquid water clouds using ISCCP data, J. Climate, 7, 465–497.

    Article  Google Scholar 

  • Hanel, R. A., 1961, Determination of cloud altitude from a satellite, J. Geophys. Res., 66, 1300–1300.

    Article  Google Scholar 

  • Heidinger, A. K., and G. L. Stephens, 2000, Molecular line absorption in a scattering atmosphere. Part II: Application to remote sensing in O2 A-band, J. Atmos. Sci., 57, 1615–1634.

    Article  Google Scholar 

  • Herman, J. R., D. Larko, E. Celarier, and J. Ziemke, 2001, Changes in the Earth’s UV reflectivity from the surface, clouds, and aerosols, J. Geophys. Res., 106, 5353–5368.

    Article  Google Scholar 

  • Joiner, J., and P. Bhartia, 1995, The determination of cloud pressures from rotational Raman scattering in satellite backscatter ultraviolet measurements, J. Geophys. Res., 100, 23019–23026.

    Article  Google Scholar 

  • Joiner, J., and A. P. Vasilkov, 2006, First results from the OMI rotational Raman scattering cloud pressure algorithm, IEEE Trans. Geosci. Remote Sens., 44, 1272–1282.

    Article  Google Scholar 

  • King, M. D., 1987, Determination of the scaled optical thickness of clouds from reflected solar radiation measurements. J. Atmos. Sci., 44, 1734–1751.

    Article  Google Scholar 

  • King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou, 2004, Remote sensing of liquid water and ice cloud optical thickness, and effective radius in the arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21, 857–875.

    Article  Google Scholar 

  • Koelemeijer, R. B. A., P. Stammes, J. W. Hovenier, and J. F. de Haan, 2001, A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment, J. Geophys. Res., 106, 3475–3490.

    Article  Google Scholar 

  • Knap, W. H., P. Stammes, R. B. A. Koelemeijer, 2002, Cloud thermodynamic-phase determination from near-infrared spectra of reflected sunlight. J. Atmos. Sci., 59, 83–96.

    Article  Google Scholar 

  • Kokhanovsky A. A., V. V. Rozanov, E. P. Zege, H. Bovensmann, and J. P. Burrows, 2003, A semianalytical cloud retrieval algorithm using backscattered radiation in 0.4–2.4 μm spectral region, J. Geophys. Res., 108, doi:10.1029/2001JD001543.

  • Kokhanovsky, A. A., 2006, Cloud Optics, Dordrecht: Springer.

    Book  Google Scholar 

  • Kokhanovsky, A. A., O. Jourdan, and J. P. Burrows, 2006, The cloud phase discrimination from a satellite, IEEE Geosci. Rem. Sens. Lett., 3, 103–106.

    Article  Google Scholar 

  • Kokhanovsky, A. A., M. Vountas, V. V. Rozanov, W. Lotz, H. Bovensmann, and J. P. Burrows, 2007, Global cloud top height and thermodynamic phase distribution as obtained by SCIAMACHY on ENVISAT, Int. J. Remote Sensing, 28, 4499–4507.

    Article  Google Scholar 

  • Kokhanovsky, A. A., C. M. Naud, and A. Devasthale, 2008, Inter-comparison of ground-based radar and satellite cloud-top height retrievals for overcast single-layered cloud fields, IEEE Trans. Geosci. Rem. Sens., 47, 1901–1908.

    Article  Google Scholar 

  • Kuze, A., and K. V. Chance, 1994, Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands, J. Geophys. Res., 99, 14,481–14,491.

    Google Scholar 

  • Liou, K.-N., 2002, Introduction to Atmospheric Radiation, New York: Academic Press.

    Google Scholar 

  • Loyola, D.G. R., 2004, Automatic cloud analysis from polar-orbiting satellites using neural network and data fusion techniques, Proc. Geosci. Remote Sens. Symp., 4, 2530–2533.

    Google Scholar 

  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009, A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data, J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

  • Menzel, W. P., R. A. Frey, H. Zhang, D. P. Wylie, C. C. Moeller, R. E. Holz, B. Maddux, B. A. Baum, K. I. Strabala, and L. E. Gumley, 2008, MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47, 1175–1198.

    Article  Google Scholar 

  • Moroney, C., R. Davies, and J.-P. Muller, 2002, Operational retrieval of cloud-top heights using MISR data, IEEE Trans. Geosci. Remote Sens., 40, 1532–1546.

    Article  Google Scholar 

  • Nakajima, T., and M. D. King, 1990, Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part 1. Theory, J. Atmos. Sci., 47, 1878–1893.

    Article  Google Scholar 

  • Nakajima, T., M. D. King, J. D. Spinhirne, and L. F. Radke, 1991, Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part 2. Marine stratocumulus observations, J. Atmos. Sci., 48, 782–850.

    Article  Google Scholar 

  • Ou, S.C., K. N. Liou, Y. Takano, and R. L. Slonaker, 2005, Remote sensing of cirrus cloud particle size and optical depth using polarimetric sensor measurements. J. Atmos. Sci., 62, 4371–4383.

    Article  Google Scholar 

  • Park H., D. F. Heath, and C. L. Mateer, 1986, Possible application of the Fraunhofer line filling in effect to cloud height measurements, in Meteorological Optics, OSA Technical Digest Series, pp. 70–81, Opt. Soc. Am., Washington, D.C.

    Google Scholar 

  • Pilewskie, P., and S. Twomey, 1987, Discrimination of ice from water in clouds by optical remote sensing. Atmos. Res., 21, 113–122.

    Article  Google Scholar 

  • Platnick, S., J. Y. Li, M. D. King, H. Gerber, and P. V. Hobbs, 2001, A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surfaces, J. Geophys. Res., 106, 15185–15199.

    Article  Google Scholar 

  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003, The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459–473.

    Article  Google Scholar 

  • Price, M. J., 1977, On probing the outer planets with the Raman effect, Rev. Geophys., 15, 227–234.

    Article  Google Scholar 

  • Rolland, P., K. N. Liou, M. D. King, S. C. Tsay, and G. M. McFarquhar, 2000, Remote sensing of optical and microphysical properties of cirrus clouds using MODIS channels: methodology and sensitivity to assumptions. J. Geophys. Res., 105, 11,721–11,738.

    Google Scholar 

  • Rossow, W. B., and R. A. Schiffer, 1999, Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2287.

    Article  Google Scholar 

  • Rozanov, V. V., and A. A. Kokhanovsky, 2004, The semi-analytical cloud retrieval algorithm as applied to the cloud top altitude and the cloud geometrical thickness determination from the top of atmosphere reflectance measurements in the oxygen absorption bands, J. Geophys. Res., 109, doi:10.1029/2003JD004104.

  • Rozanov, V. V., Kokhanovsky, A. A., D. Loyola, R. Siddans, B. Latter, A. Stevens, and J. P. Burrows, 2006, Intercomparison of cloud top altitudes as derived using GOME and ATSR-2 instruments onboard ERS-2, Rem. Sens. Environ., 102, 186–193.

    Article  Google Scholar 

  • Rozanov V. V. and A. A. Kokhanovsky, 2008, Impact of single- and multi-layered cloudiness on ozone vertical column retrievals using nadir observations of backscattered solar radiation, in: Light scattering reviews, (ed. A. A. Kokhanovsky, vol.3), Berlin: Springer-Praxis, 113–190.

    Google Scholar 

  • Rozenberg, G. V., M. S. Malkevitch, V. S. Malkova, and V. I. Syachinov, 1978, The determination of optical characteristics of clouds from measurements of the reflected solar radiation using data from the Sputnik “KOSMOS-320”, Izvestiya Acad. Sci. USSR, Phys. Atmos. Okeana, 10, 14–24.

    Google Scholar 

  • Saiedy, F., Hilleary, D. T., and Morgan, W. A., 1965, Cloud-top altitude measurements from satellites, Appl. Optics, 4, 495–500.

    Article  Google Scholar 

  • Saiedy, F. H., H. Jacobowitz, and D.Q. Wark, 1967, On cloud – top determination from Gemini-5, J. Atmos. Sci., 24, 63–69.

    Article  Google Scholar 

  • Sassen, K., Z. Wang, and D. Liu, 2008, Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements, J. Geophys. Res., 113, doi:10.1029/2008JD009972.

    Google Scholar 

  • Schreiner, A.J., D. A. Unger, W. P. Menzel, G. P. Ellrod, K. I. Strabala, and J. L. Pellet, 1993, A comparison of ground and satellite observations of cloud cover, Bull. Amer. Meteor. Soc., 74, 1851–1861.

    Article  Google Scholar 

  • Stephens, G. L., D. G. Vane, S. Tanelli, E. Im, S. Durden, M. Rokey, D. Reinke, P. Partain, G. G. Mace, R. Austin, T. L’Ecuyer, J. Haynes, M. Lebsock, K. Suzuki, D. Waliser, D. Wu, J. Kay, A. Gettelman, Z. Wang, and R. Marchand, 2008, CloudSat mission: Performance and early science after the first year of operation, J. Geophys. Res., 113, doi:10.1029/2008JD009982.

  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994, Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33, 212–229.

    Article  Google Scholar 

  • Twomey, S., and T. Cocks, 1989, Remote sensing of cloud parameters from spectra1 reflectance in the near-infrared, Contrib. Atmos. Phys., 62, 172–179.

    Google Scholar 

  • van Deelen, R., 2007, Rotational Raman scattering in The Earth's atmosphere, PhD thesis, Free University of Amsterdam.

    Google Scholar 

  • van Diedenhoven, B., 2007, Satellite Remote Sensing of Cloud Properties in Support of Trace Gas Retrievals, Ph.D. thesis, Free University, Amsterdam.

    Google Scholar 

  • van Diedenhoven, B., O. P. Hasekamp and J. Landgraf, 2007, Retrieval of cloud parameters from satellite-based reflectance measurements in the ultraviolet and the oxygen A-band, J. Geophys. Res., 112, D15208, doi:10.1029/2006JD008155.

    Article  Google Scholar 

  • Wallace, L., 1972, Rayleigh and Raman scattering by H2 in a planetary atmosphere, Astrophys. J., 176, 249–257.

    Article  Google Scholar 

  • Wang, L., and A. E. Dessler, 2006, Instantaneous cloud overlap statistics in the tropical area revealed by ICESat/GLAS data, Geophys. Res. Lett., 33, L15804, doi:10.1029/2005GL024350, 2006.

    Article  Google Scholar 

  • Winker D. M. and L. R. Poole, 1995, Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS, Appl. Phys. B , 60, 341–344.

    Article  Google Scholar 

  • Winker, D. M., Couch, R. H., and M. P. McCormick, 1996, An overview of LITE: NASA's Lidar In-space Technology Experiment, Proc. IEEE, 84, 164–180.

    Article  Google Scholar 

  • Wu, D. L., S. A. Ackerman, R. Davies, D. J. Diner, M. J. Garay, B. H. Kahn, B. C. Maddux, C. M. Moroney, G. L. Stephens, J. P. Veefkind, and M. A. Vaughan, 2009, Vertical distributions and relationships of cloud occurrence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO, and CloudSat, Geophys. Res. Lett., 36, doi:10.1029/2009GL037464.

  • Wylie, D., D. L. Jackson, W. P. Menzel, and J. J. Bates, 2005, Trends in global cloud cover in two decades of HIRS observations, J. Climate, 18, 3021–3031.

    Article  Google Scholar 

  • Yamamoto, G., and D. Q. Wark, 1961, Discussion of the letter by R. A. Hanel, “Determination of cloud altitude from a satellite”, J. Geophys. Res., 66, 3596–3596.

    Article  Google Scholar 

  • Zege, E. P., I. L. Katsev, and I. N. Polonsky, 1995, Analytical solution to LIDAR return signals from clouds with regard to multiple scattering, Appl. Phys. B, 60, 345–353.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the members of their research groups for the support, advice, and preparation of figures used this work. The support of ACCENT and editors of this book is much appreciated. The use of ESA, NASA and ARM SGP radar data is acknowledged with many thanks.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kokhanovsky, A.A., Platnick, S., King, M.D. (2011). Remote Sensing of Terrestrial Clouds from Space using Backscattering and Thermal Emission Techniques. In: Burrows, J., Borrell, P., Platt, U. (eds) The Remote Sensing of Tropospheric Composition from Space. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14791-3_5

Download citation

Publish with us

Policies and ethics