Skip to main content

Improved Primality Proving with Eisenstein Pseudocubes

  • Conference paper
Algorithmic Number Theory (ANTS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6197))

Included in the following conference series:

Abstract

In August 2002, Agrawal, Kayal, and Saxena described an unconditional, deterministic algorithm for proving the primality of an integer N. Though of immense theoretical interest, their technique, even incorporating the many improvements that have been proposed since its publication, remains somewhat slow for practical application. This paper describes a new, highly efficient method for certifying the primality of an integer \(N \equiv 1 \pmod 3\), making use of quantities known as Eisenstein pseudocubes. This improves on previous attempts, including the peudosquare-based approach of Lukes et al., and the pseudosquare improvement proposed by Berrizbeitia, et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lukes, R.F., Patterson, C.D., Williams, H.C.: Some results on pseudosquares. Mathematics of Computation 65(213), S25–S27, 361–372 (1996)

    Google Scholar 

  2. Hall, M.: Quadratic residues in factorization. Bulletin of the American Mathematical Society 39, 758–763 (1933)

    Article  MathSciNet  Google Scholar 

  3. Williams, H.C.: Édouard Lucas and Primality Testing. Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 22. Wiley Interscience, Hoboken (1998)

    MATH  Google Scholar 

  4. Williams, H.C.: Primality testing on a computer. Ars Combinatoria 5, 127–185 (1978)

    MATH  MathSciNet  Google Scholar 

  5. Berrizbeitia, P., Müller, S., Williams, H.C.: Pseudocubes and primality testing. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 102–116. Springer, Heidelberg (2004)

    Google Scholar 

  6. Wooding, K., Williams, H.C.: Doubly-focused enumeration of pseudosquares and pseudocubes. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 208–221. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Sorenson, J.P.: Sieving for pseudosquares and pseudocubes in parallel using doubly-focused enumeration and wheel datastructures. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp. 331–339. Springer, Heidelberg (2010)

    Google Scholar 

  8. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 84. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  9. Williams, H.C.: Some properties of a special set of recurring sequences. Pacific Journal of Mathematics 77(1), 273–285 (1978)

    MATH  MathSciNet  Google Scholar 

  10. Wooding, K.: The Sieve Problem in One- and Two-Dimensions. PhD thesis, The University of Calgary, Calgary, AB (April 2010), http://math.ucalgary.ca/~hwilliam/files/wooding10thesis.pdf

  11. Bernstein, D.J.: Detecting perfect powers in essentially linear time. Mathematics of Computation 67, 1253–1283 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen, H.: A Course in Computational Algebraic Number Theory, 4th edn. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  13. Williams, H.C.: An m 3 public-key encryption scheme. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 358–368. Springer, Heidelberg (1986)

    Google Scholar 

  14. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  15. Crandall, R., Pomerance, C.: Prime numbers: A computational Perspective, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  16. Lehmer, D.H.: The sieve problem for all-purpose computers. Mathematical Tables and Other Aids to Computation 7(41), 6–14 (1953)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wooding, K., Williams, H.C. (2010). Improved Primality Proving with Eisenstein Pseudocubes. In: Hanrot, G., Morain, F., Thomé, E. (eds) Algorithmic Number Theory. ANTS 2010. Lecture Notes in Computer Science, vol 6197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14518-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14518-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14517-9

  • Online ISBN: 978-3-642-14518-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics