Skip to main content

On a Problem of Hajdu and Tengely

  • Conference paper
Algorithmic Number Theory (ANTS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6197))

Included in the following conference series:

Abstract

We prove a result that finishes the study of primitive arithmetic progressions consisting of squares and fifth powers that was carried out by Hajdu and Tengely in a recent paper: The only arithmetic progression in coprime integers of the form (a 2, b 2, c 2, d 5) is (1, 1, 1, 1). For the proof, we first reduce the problem to that of determining the sets of rational points on three specific hyperelliptic curves of genus 4. A 2-cover descent computation shows that there are no rational points on two of these curves. We find generators for a subgroup of finite index of the Mordell-Weil group of the last curve. Applying Chabauty’s method, we prove that the only rational points on this curve are the obvious ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System I: The User Language. J. Symb. Comp. 24, 235–265 (1997), http://magma.maths.usyd.edu.au/magma

    Article  MATH  MathSciNet  Google Scholar 

  2. Bruin, N., Győry, K., Hajdu, L., Tengely, S.: Arithmetic progressions consisting of unlike powers. Indag. Math. 17, 539–555 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruin, N., Stoll, M.: 2-cover descent on hyperelliptic curves. Math. Comp. 78, 2347–2370 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bruin, N., Stoll, M.: The Mordell-Weil sieve: Proving non-existence of rational points on curves. LMS J. Comput. Math. (to appear), arXiv:0906.1934v2 [math.NT]

    Google Scholar 

  5. Cantor, D.G.: Computing in the Jacobian of a hyperelliptic curve. Math. Comp. 48, 95–101 (1987)

    MATH  MathSciNet  Google Scholar 

  6. Chabauty, C.: Sur les points rationnels des courbes algébriques de genre supérieur à l’unité. C. R. Acad. Sci. Paris 212, 882–885 (1941) (French)

    MathSciNet  Google Scholar 

  7. Coleman, R.F.: Effective Chabauty. Duke Math. J. 52, 765–770 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Darmon, H., Merel, L.: Winding quotients and some variants of Fermat’s last theorem. J. Reine Angew. Math. 490, 81–100 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Dickson, L.E.: History of the theory of numbers. Vol. II: Diophantine Analysis. Chelsea Publishing Co., New York (1966)

    Google Scholar 

  10. Evertse, J.-H., Tijdeman, R.: Some open problems about Diophantine equations from a workshop in Leiden in (May 2007), http://www.math.leidenuniv.nl/~evertse/07-workshop-problems.pdf

  11. Hajdu, L.: Perfect powers in arithmetic progression. A note on the inhomogeneous case. Acta Arith. 113, 343–349 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hajdu, L., Tengely, S.: Arithmetic progressions of squares, cubes and n-th powers. Funct. Approx. Comment. Math. 41, 129–138 (2009)

    MATH  MathSciNet  Google Scholar 

  13. Poonen, B., Schaefer, E.F.: Explicit descent for Jacobians of cyclic covers of the projective line. J. Reine Angew. Math. 488, 141–188 (1997)

    MATH  MathSciNet  Google Scholar 

  14. Stoll, M.: Rational 6-cycles under iteration of quadratic polynomials. LMS J. Comput. Math. 11, 367–380 (2008)

    MathSciNet  Google Scholar 

  15. Stoll, M.: Independence of rational points on twists of a given curve. Compositio Math. 142, 1201–1214 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stoll, M.: Implementing 2-descent for Jacobians of hyperelliptic curves. Acta Arith. 98, 245–277 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siksek, S., Stoll, M. (2010). On a Problem of Hajdu and Tengely. In: Hanrot, G., Morain, F., Thomé, E. (eds) Algorithmic Number Theory. ANTS 2010. Lecture Notes in Computer Science, vol 6197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14518-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14518-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14517-9

  • Online ISBN: 978-3-642-14518-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics