Skip to main content

Differential-Algebraic Dynamic Logic DAL

  • Chapter
  • First Online:
Book cover Logical Analysis of Hybrid Systems
  • 1404 Accesses

Synopsis

We generalise dynamic logic to a logic for differential-algebraic programs, i.e., discrete programs augmented with first-order differential-algebraic formulas as continuous evolution constraints in addition to first-order discrete jump formulas. These programs characterise interacting discrete and continuous dynamics of hybrid systems elegantly and uniformly, including systems with disturbance and differential-algebraic equations. For our logic, we introduce a calculus over real arithmetic with discrete induction and a new differential induction with which differential-algebraic programs can be verified by exploiting their differential constraints algebraically without having to solve them.We develop the theory of differential induction and differential refinement and analyse their deductive power. As an example, we present parametric tangential roundabout manoeuvres in air traffic control and prove collision avoidance in our calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rodríguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid systems. In: Morari and Thiele [212], pp. 590–605. DOI 10.1007/b106766

    Google Scholar 

  2. Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000). DOI 10.1109/5.871305

    Article  Google Scholar 

  3. Galdino, A.L., Muñoz, C., Ayala-RincĂ³n, M.: Formal verification of an optimal air traffic conflict resolution and recovery algorithm. In: D. Leivant, R. de Queiroz (eds.) WoLLIC, LNCS, vol. 4576, pp. 177–188. Springer (2007)

    Google Scholar 

  4. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta and Malik [146], pp. 190–203. DOI 10.1007/978-3-540-70545-1

    Google Scholar 

  5. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated Reasoning 41(2), 143–189 (2008). DOI 10.1007/s10817-008-9103-8

    Article  MATH  MathSciNet  Google Scholar 

  6. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society (2006)

    Google Scholar 

  7. Damm, W., Mikschl, A., Oehlerking, J., Olderog, E.R., Pang, J., Platzer, A., Segelken, M., Wirtz, B.: Automating verification of cooperation, control, and design in traffic applications. In: C.B. Jones, Z. Liu, J. Woodcock (eds.) Formal Methods and Hybrid Real-Time Systems, LNCS, vol. 4700, pp. 115–169. Springer (2007). DOI 10.1007/978-3-540-75221-9_6

    Google Scholar 

  8. Gödel, K.: Ăœber formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Mon. hefte Math. Phys. 38, 173–198 (1931). DOI 10.1007/BF01700692

    Article  Google Scholar 

  9. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-oriented program verification. In: U. Furbach, N. Shankar (eds.) IJCAR, LNCS, vol. 4130, pp. 266– 280. Springer (2006). DOI 10.1007/11814771_23

    Google Scholar 

  10. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci. 290(1), 937–973 (2003)

    Article  MATH  Google Scholar 

  11. Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of TCAS. Proc. IEEE – Special Issue on Hybrid Systems: Theory & Applications 88(7), 926–947 (2000)

    Google Scholar 

  12. Damm,W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. In: Peled and Tsay [226], pp. 99–113. DOI 10.1007/11562948_10

    Google Scholar 

  13. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE T. Automat. Contr. 43(4), 509–521 (1998). DOI 10.1109/9.664154

    Article  MATH  MathSciNet  Google Scholar 

  14. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2 edn. University of California Press, Berkeley (1951)

    MATH  Google Scholar 

  15. Fitting, M., Mendelsohn, R.L.: First-OrderModal Logic. Kluwer, Norwell, MA, USA (1999)

    Google Scholar 

  16. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)

    Google Scholar 

  17. Gear, C.W.: Differential-algebraic equations index transformations. SIAM J. Sci. Stat. Comput. 9(1), 39–47 (1988). DOI 10.1137/0909004

    Article  MATH  MathSciNet  Google Scholar 

  18. Hwang, I., Kim, J., Tomlin, C.: Protocol-based conflict resolution for air traffic control. Air Traffic Control Quarterly 15(1), 1–34 (2007)

    Google Scholar 

  19. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states. In: J. Flum, M. Rodr´ıguez-Artalejo (eds.) CSL, LNCS, vol. 1683, pp. 126–140. Springer (1999)

    Google Scholar 

  21. Dowek, G., Muñoz, C., Carreño, V.A.: Provably safe coordinated strategy for distributed conflict resolution. In: Proceedings of the AIAA Guidance Navigation, and Control Conference and Exhibit 2005, AIAA-2005-6047 (2005)

    Google Scholar 

  22. Collins, P., Lygeros, J.: Computability of finite-time reachable sets for hybrid systems. In: CDC-ECC’05, pp. 4688– 4693. IEEE (2005)

    Google Scholar 

  23. Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In: S.N. Art¨emov, A. Nerode (eds.) LFCS, LNCS, vol. 4514, pp. 457–471. Springer (2007). DOI 10.1007/978-3-540-72734-7_32

    Google Scholar 

  24. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE T. Automat. Contr. 52(8), 1415–1429 (2007). DOI 10.1109/TAC.2007.902736

    Article  MathSciNet  Google Scholar 

  25. Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad et al. [41], pp. 473–486. DOI 10.1007/978-3-540-71493-4_37

    Google Scholar 

  26. Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time systems. In: Grossman et al. [144], pp. 36–59

    Google Scholar 

  27. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991). DOI 10.1016/S0747-7171(08)80152-6

    Article  MATH  MathSciNet  Google Scholar 

  28. Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue sharing. J. Autom. Reasoning 30(1), 1–31 (2003). DOI 10.1023/A:1022587501759

    Article  MATH  MathSciNet  Google Scholar 

  29. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur and Pappas [14], pp. 477–492. DOI 10.1007/b96398

    Google Scholar 

  30. Pour-El, M.B., Richards, I.: A computable ordinary differential equation which possesses no computable solution. Annals of Mathematical Logic 17, 61–90 (1979). DOI 10.1016/0003-4843(79)90021-4

    Article  MATH  MathSciNet  Google Scholar 

  31. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman et al. [144], pp. 209–229

    Google Scholar 

  32. Massink, M., Francesco, N.D.: Modelling free flight with collision avoidance. In: Andler and Offutt [16], pp. 270–280. DOI 10.1109/ICECCS.2001.930186

    Google Scholar 

  33. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2 edn. Springer, New York (1996)

    MATH  Google Scholar 

  34. Johansson, K.H., Sastry, S., Zhang, J., Lygeros, J.: Zeno hybrid systems. Int. J. Robust and Nonlinear Control 11, 435–451 (2001). DOI 10.1002/rnc.592

    Article  MATH  MathSciNet  Google Scholar 

  35. Branicky, M.S.: General hybrid dynamical systems: Modeling, analysis, and control. In: Alur et al. [12], pp. 186–200. DOI 10.1007/BFb0020945

    Google Scholar 

  36. Sibirsky, K.S.: Introduction to Topological Dynamics. Noordhoff, Leyden (1975)

    Google Scholar 

  37. Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In: N. Olivetti (ed.) TABLEAUX, LNCS, vol. 4548, pp. 216–232. Springer (2007). DOI 10.1007/978-3-540-73099-6_17

    Google Scholar 

  38. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Armando et al. [18], pp. 171–178. DOI 10.1007/978-3-540-71070-7_15

    Google Scholar 

  39. Hartman, P.: Ordinary Differential Equations. John Wiley (1964)

    Google Scholar 

  40. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic algebraic model checking I: Challenges from systems biology. In: Etessami and Rajamani [118], pp. 5–19. DOI 10.1007/11513988_3

    Google Scholar 

  41. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1/2), 29–35 (1988). DOI 10.1016/S0747-7171(88)80004-X

    Article  MATH  MathSciNet  Google Scholar 

  42. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning 31(1), 33–72 (2003). DOI 10.1023/A:1027357912519

    Article  MATH  MathSciNet  Google Scholar 

  43. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler and Pnueli [200], pp. 20–35. DOI 10.1007/3-540-36580-X_5

    Google Scholar 

  44. Walter, W.: Ordinary Differential Equations. Springer (1998)

    Google Scholar 

  45. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003). DOI 10.1142/S012905410300190X

    Article  MATH  MathSciNet  Google Scholar 

  46. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997). DOI 10.1145/256167.256195

    Article  Google Scholar 

  47. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1972)

    Google Scholar 

  48. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid systems. In: Alur and Pappas [14], pp. 539–554. DOI 10.1007/b96398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Platzer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Platzer, A. (2010). Differential-Algebraic Dynamic Logic DAL. In: Logical Analysis of Hybrid Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14509-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14509-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14508-7

  • Online ISBN: 978-3-642-14509-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics