Skip to main content

On the Optimization of Bipartite Secret Sharing Schemes

  • Conference paper
Information Theoretic Security (ICITS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5973))

Included in the following conference series:

Abstract

Bipartite secret sharing schemes are those having a bipartite access structure, that is, the set of participants is divided into two parts, and all participants in each part play an equivalent role. The bipartite access structures that admit an ideal secret sharing scheme have been characterized, but it is not known which is the optimal complexity of non-ideal bipartite access structures. By using the connection between secret sharing schemes and polymatroids, we find new bounds on the optimal complexity of these acess structures and, for some of them, we find the exact value of this parameter. Some of these bounds are obtained by using a method based on linear programming.

The authors’ work was partially supported by the Spanish Ministry of Education and Science under project TSI2006-02731.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beimel, A., Ishai, Y.: On the power of nonlinear secret sharing schemes. SIAM J. Discrete Math. 19, 258–280 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beimel, A., Livne, N.: On Matroids and Non-ideal Secret Sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 482–501. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Beimel, A., Livne, N., Padró, C.: Matroids Can Be Far From Ideal Secret Sharing. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 194–212. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Beimel, A., Orlov, I.: Secret Sharing and Non-Shannon Information Inequalities. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 539–557. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Beimel, A., Tassa, T., Weinreb, E.: Characterizing Ideal Weighted Threshold Secret Sharing. SIAM J. Discrete Math. 22, 360–397 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beimel, A., Weinreb, E.: Separating the power of monotone span programs over different fields. SIAM J. Comput. 34, 1196–1215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beimel, A., Weinreb, E.: Monotone Circuits for Monotone Weighted Threshold Functions. Information Processing Letters 97, 12–18 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  9. Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: Tight Bounds on the Information Rate of Secret Sharing Schemes. Des. Codes Cryptogr. 11, 107–122 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Math. and Combin. Comput. 9, 105–113 (1989)

    MathSciNet  Google Scholar 

  11. Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptology 4, 123–134 (1991)

    MATH  Google Scholar 

  12. Csirmaz, L.: The size of a share must be large. J. Cryptology 10, 223–231 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Csirmaz, G. Tardos. Secret sharing on trees: problem solved (preprint) (2009), Cryptology ePrint Archive, http://eprint.iacr.org/2009/071

  14. Farràs, O., Martí–Farré, J., Padró, C.: Ideal Multipartite Secret Sharing Schemes. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 448–465. Springer, Heidelberg (2007); The full version of this paper is available at the Cryptology ePrint Archive, http://eprint.iacr.org/2006/292

    Chapter  Google Scholar 

  15. Farràs, O., Padró, C.: Ideal Hierarchical Secret Sharing Schemes. Cryptology ePrint Archive, Report 2009/141, http://eprint.iacr.org/2009/141

  16. Fehr, S.: Efficient Construction of the Dual Span Program (manuscript)

    Google Scholar 

  17. Fujishige, S.: Polymatroidal Dependence Structure of a Set of Random Variables. Information and Control 39, 55–72 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Herranz, J., Sáez, G.: New Results on Multipartite Access Structures. IEEE Proceedings on Information Security 153, 153–162 (2006)

    Article  Google Scholar 

  19. Herzog, J., Hibi, T.: Discrete polymatroids. J. Algebraic Combin. 16, 239–268 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing any access structure. In: Proc. IEEE Globecom 1987, pp. 99–102 (1987)

    Google Scholar 

  21. Jackson, W.-A., Martin, K.M.: Geometric secret sharing schemes and their duals. Des. Codes Cryptogr. 4, 83–95 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Martí-Farré, J., Padró, C.: On Secret Sharing Schemes, Matroids and Polymatroids. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 273–290. Springer, Heidelberg (2007); The full version of this paper is available at the Cryptology ePrint Archive, http://eprint.iacr.org/2006/077

    Chapter  Google Scholar 

  23. Matúš, F.: Matroid representations by partitions. Discrete Math. 203, 169–194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Matúš, F.: Adhesivity of polymatroids. Discrete Math. 307, 2464–2477 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Metcalf-Burton, J.R.: Information Rates of Minimal Non-Matroid-Related Access Structures. arxiv.org/pdf/0801.3642

    Google Scholar 

  26. Morillo, P., Padró, C., Sáez, G., Villar, J.L.: Weighted Threshold Secret Sharing Schemes. Inf. Process. Lett. 70, 211–216 (1999)

    Article  MATH  Google Scholar 

  27. Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inform. Theory 46, 2596–2604 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shamir, A.: How to share a secret. Commun. of the ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shannon, C.E.: A Mathematical Theory of Communication. Bell. Sys. Tech. Journal 27 (1948)

    Google Scholar 

  30. Simmons, G.J.: How to (Really) Share a Secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, Heidelberg (1990)

    Google Scholar 

  31. Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2, 357–390 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Stinson, D.R.: Decomposition constructions for secret-sharing schemes. IEEE Transactions on Information Theory 40, 118–125 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)

    MATH  Google Scholar 

  34. Yeung, R.W.: A framework for linear information inequalities. IEEE Trans. Inform. Theory IT-41, 412–422 (1995)

    Article  Google Scholar 

  35. Yeung, R.W.: A First Course in Information Theory. Springer, Heidelberg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farràs, O., Metcalf-Burton, J.R., Padró, C., Vázquez, L. (2010). On the Optimization of Bipartite Secret Sharing Schemes. In: Kurosawa, K. (eds) Information Theoretic Security. ICITS 2009. Lecture Notes in Computer Science, vol 5973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14496-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14496-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14495-0

  • Online ISBN: 978-3-642-14496-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics