Skip to main content

Skeleton and Shape Adjustment and Tracking in Multicamera Environments

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6169))

Included in the following conference series:

Abstract

In this paper we present a method for automatic body model adjustment and motion tracking in multicamera environments. We introduce a set of shape deformation parameters based on linear blend skinning, that allow a deformation related to the scaling of the distinct bones of the body model skeleton, and a deformation in the radial direction of a bone. The adjustment of a generic body model to a specific subject is achieved by the estimation of those shape deformation parameters. This estimation combines a local optimization method and hierarchical particle filtering, and uses an efficient cost function based on foreground silhouettes using GPU. This estimation takes into account anthropometric constraints by using a rejection sampling method of propagation of particles. We propose a hierarchical particle filtering method for motion tracking using the adjusted model. We show accurate model adjustment and tracking for distinct subjects in a 5 cameras set up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poppe, R.: Vision-based human motion analysis: An overview. CVIU 108(1-2), 4–18 (2007)

    Google Scholar 

  2. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: IEEE CVPR ’00, vol. 2, pp. 126–133 (2000)

    Google Scholar 

  3. Mikić, I.: Human Body Model Acquisition and Tracking using Multi-Camera Voxel Data. PhD thesis, University of California, San Diego (2002)

    Google Scholar 

  4. Ballan, L., Cortelazzo, G.M.: Marker-less motion capture of skinned models in a four camera set-up using optical flow and silhouettes. In: 3DPVT, USA (2008)

    Google Scholar 

  5. Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. ACM TOG 27(3), 1–9 (2008)

    Article  Google Scholar 

  6. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. In: SIGGRAPH ’07, p. 72. ACM, New York (2007)

    Chapter  Google Scholar 

  7. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. In: SIGGRAPH ’05, vol. 24(3), pp. 408–416 (2005)

    Google Scholar 

  8. Corazza, S., Mündermann, L., Gambaretto, E., Ferrigno, G., Andriacchi, T.: Markerless Motion Capture through Visual Hull, Articulated ICP and Subject Specific Model Generation. IJCV 87(1-2), 156–169 (2010)

    Article  Google Scholar 

  9. Bandouch, J., Engstler, F., Beetz, M.: Accurate Human Motion Capture Using an Ergonomics-Based Anthropometric Human Model. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, p. 248. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Carranza, J., Theobalt, C., Magnor, M., Seidel, H.: Free-viewpoint video of human actors. ACM TOG 22(3), 569–577 (2003)

    Article  Google Scholar 

  11. MacCormick, J., Isard, M.: Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 3–19. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Canton-Ferrer, C., Casas, J.R., Pardàs, M.: Exploiting structural hierarchy in articulated objects towards robust motion capture. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, pp. 82–91. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. IJCV 56(3), 179–194 (2004)

    Article  Google Scholar 

  14. Lewis, J., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH ’00, pp. 165–172. ACM, New York (2000)

    Chapter  Google Scholar 

  15. Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE Conference on Systems, Man and Cybernetics, Vol. 4 (2004)

    Google Scholar 

  16. Xu, L., Landabaso, J., Pardas, M.: Shadow removal with blob-based morphological reconstruction for error correction. In: IEEE ICASSP ’05, Vol. 2 (2005)

    Google Scholar 

  17. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical recipes in C: the art of scientific computing (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alcoverro, M., Casas, J.R., Pardàs, M. (2010). Skeleton and Shape Adjustment and Tracking in Multicamera Environments. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2010. Lecture Notes in Computer Science, vol 6169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14061-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14061-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14060-0

  • Online ISBN: 978-3-642-14061-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics