Skip to main content

Fractional Dynamics of Hamiltonian Quantum Systems

  • Chapter
Fractional Dynamics

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

Abstract

In the quantum mechanics, the observables are given by self-adjoint operators (Messiah, 1999; Tarasov, 2005). The dynamical description of a quantum system is given by a superoperator (Tarasov, 2008b), which is a rule that assigns to each operator exactly one operator. Dynamics of quantum observable is described by the Heisenberg equation. For Hamiltonian systems, the infinitesimal superoperator of the Heisenberg equation is defined by some form of derivation (Tarasov, 2005, 2008b). The infinitesimal generator (i/ħ)[H, .], which is used in the Heisenberg equation, is a derivation of observables. A derivation is a linear map D, which satisfies the Leibnitz rule D(AB) = (DA)B +A(DB) for all operators A and B. Fractional derivative can be defined as a fractional power of derivative (see Section 5.7 m (Samko et al., 1993)). We consider a fractional derivative on a set of observables as a fractional power of derivative (i/ħ)[H, .]. It allows us to generalize a notion of quantum Hamiltonian systems. In this case, operator equation for quantum observables is a fractional generalization of the Heisenberg equation (Tarasov, 2008a). The suggested fractional Heisenberg equation is exactly solved for the Hamiltonians of free particle and harmonic oscillator. Fractional power of operators (Balakrishnan, 1960; Komatsu, 1966; Berens et al., 1968; Yosida, 1995; Krein, 1971; Martinez and Sanz, 2000) and superoperator (Tarasov, 2008b, 2009) can be used as a possible approach to describe an interaction between the system and an environment. We note that fractional power of the operator, which is defined by Piosson bracket of classical dynamics, was considered in (Tarasov, 2008c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • V. Balakrishnan, 1960, Fractional power of closed operator and the semigroup generated by them, Pacific Journal of Mathematics, 10, 419–437.

    MathSciNet  MATH  Google Scholar 

  • H. Berens, P.L. Butzer, U. Westphal, 1968, Representation of fractional powers of infinitesimal generators of semigroups, Bulletin of the American Mathematical Society, 74, 191–196.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Bochner, 1949, Diffusion equations and stochastic processes, Proceedings of the National Academy of Sciences USA, 35, 369–370.

    Article  MathSciNet  ADS  Google Scholar 

  • X.Y. Guo, M.Y. Xu, 2006, Some physical applications of fractional Schrödinger equation, Journal of Mathematical Physics, 47, 082104.

    Article  MathSciNet  ADS  Google Scholar 

  • A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

    MATH  Google Scholar 

  • H. Komatsu, 1966, Fractional powers of operators, Pacific Journal of Mathematics, 19, 285–346.

    MathSciNet  MATH  Google Scholar 

  • S.G. Krein, 1971, Linear Differential Equations in Banach Space, Translations of Mathematical Monographs, Vol.29, American Mathematical Society; Translated from Russian: Nauka, Moscow, 1967.

    Google Scholar 

  • N. Laskin, 2000, Fractional quantum mechanics, Physical Review E, 62, 3135–3145.

    Article  ADS  Google Scholar 

  • N. Laskm, 2002, Fractional Schrodinger equation, Physical Review E, 66, 056108.

    Article  MathSciNet  ADS  Google Scholar 

  • C. Martinez, M. Sanz, 2000, The Theory of Fractional Powers of Operators, Elsevier, Amsterdam.

    Google Scholar 

  • A Messiah, 1999, Quantum Mechanics, Dover, New York, 1152p. Section 8.10.

    Google Scholar 

  • M. Naber, 2004, Time fractional Schrödinger equation, Journal of Mathematical Physics, 45, 3339–3352.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R.S. Phillips, 1952, On the generation of semigroups of linear operators, Pacific Journal of Mathematics, 2, 343–396.

    MathSciNet  MATH  Google Scholar 

  • A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, 1986, Integrals and Series, Vol.1: Elementary Functions, Gordon and Breach, New York.

    MATH  Google Scholar 

  • S.G. Samko, A.A Kilbas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications, Nauka i Tehnika, Minsk, 1987. in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  • V.E. Tarasov, 2005, Quantum Mechanics: Lectures on Foundations of the Theory, 2nd ed., Vuzovskaya Kniga, Moscow. In Russian.

    Google Scholar 

  • V.E. Tarasov, 2008a, Fractional Heisenberg equation, Physics Letters A, 372, 2984–2988.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2008b, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, Elsevier, Amsterdam.

    MATH  Google Scholar 

  • V.E. Tarasov, 2008c, Fractional powers of derivatives in classical mechanics, Communications in Applied Analysis, 12, 441–450.

    MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2009, Fractional generalization of the quantum Markovian master equation, Theoretical and Mathematical Physics, 158, 179–195.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, G.M. Zaslavsky, 2006, Dynamics with low-level fractionality, Physica A, 368, 399–415.

    Article  MathSciNet  ADS  Google Scholar 

  • A. Tofighi, H.N. Pour, 2007, ɛ-expansion and the fractional oscillator, Physica A, 374, 41–45.

    Article  ADS  Google Scholar 

  • A. Tofighi, A. Golestani, 2008, A perturbative study of fractional relaxation phenomena, Physica A, 387, 1807–1817.

    Article  ADS  Google Scholar 

  • S.W. Wang, M.Y. Xu, 2007, Generalized fractional Schrödinger equation with space-time fractional derivatives, Journal of Mathematical Physics, 48, 043502.

    Article  MathSciNet  ADS  Google Scholar 

  • K. Yosida, 1995, Functional Analysis, 6th ed., Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasov, V.E. (2010). Fractional Dynamics of Hamiltonian Quantum Systems. In: Fractional Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14003-7_19

Download citation

Publish with us

Policies and ethics