Skip to main content

Novelty Detection in Projected Spaces for Structural Health Monitoring

  • Conference paper
Advances in Intelligent Data Analysis IX (IDA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6065))

Included in the following conference series:

Abstract

The aim of Structural Health Monitoring (SHM) is to detect and identify damages in man-made structures such as bridges by monitoring features derived from vibration data. A usual approach is to deal with vibration measurements, obtained by acceleration sensors during the service life of the structure. In this case, only normal data from healthy operation are available, so damage detection becomes a novelty detection problem. However, when prior knowledge about the structure is limited, the set of candidate features that can be extracted from the set of sensors is large and dimensionality reduction of the input space can result in more precise and efficient novelty detectors. We assess the effect of linear, nonlinear, and random projection to low-dimensional spaces in novelty detection by means of probabilistic and nearest-neighbor methods. The methods are assessed with real-life data from a wooden bridge model, where structural damages are simulated with small added weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences 66(4), 671–687 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Knowledge Discovery and Data Mining (KDD 2001), pp. 245–250 (2001)

    Google Scholar 

  3. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection – a survey. ACM Computing Surveys 41(3), 15:1–15:44 (2009)

    Google Scholar 

  5. Demartines, P., Hérault, J.: Curvilinear component analysis: a self organizing neural network for non linear mapping of data sets. IEEE Transactions on Neural Networks 8, 148–154 (1997)

    Article  Google Scholar 

  6. Deraemaeker, A., Reynders, E., Roeck, G.D., Kullaa, J.: Vibration-based structural health monitoring using output-only measurements under changing environment. Mechanical Systems and Signal Processing 22(1), 34–56 (2008)

    Article  Google Scholar 

  7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  8. Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A 365, 303–315 (2007)

    Article  Google Scholar 

  9. Hérault, J., Jausions-Picaud, C., Guérin-Dugué, A.: Curvilinear Component Analysis for High-Dimensional Data Representation: I. Theoretical Aspects and Practical Use in the Presence of Noise. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1607, pp. 625–634. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Johnson, T.J., Adams, D.E.: Transmissibility as a differential indicator of structural damage. Journal of Vibration and Acoustics 124(4), 634–641 (2002)

    Article  Google Scholar 

  11. Kullaa, J.: Elimination of environmental influences from damage-sensitive features in a structural health monitoring system. In: Balageas, D.L. (ed.) Proceedings of the First European Workshop on Structural Health Monitoring 2002, Onera, pp. 742–749. DEStech Publications Inc. (2002)

    Google Scholar 

  12. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. In: Information Science and Statistics. Springer, Heidelberg (2007)

    Google Scholar 

  13. Montalvão, D., Maia, N.M.M., Ribeiro, A.M.R.: A Review of Vibration-based Structural Health Monitoring with Special Emphasis on Composite Materials. The Shock and Vibration Digest 38(4), 295–324 (2006)

    Article  Google Scholar 

  14. Parzen, E.: On estimation of a probability density function and mode. The Annals of Mathematical Statistics 33(3), 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  15. Redner, R., Walker, H.: Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26(2), 195–234 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988)

    Article  MathSciNet  Google Scholar 

  17. Tax, D.M.J.: One-class classification; Concept-learning in the absence of counter-examples. Ph.D. thesis, Delft University of Technology (June 2001)

    Google Scholar 

  18. Tax, D.: DDtools, Data Description Toolbox for Matlab, version 1.7.3 (December 2009)

    Google Scholar 

  19. Toivola, J., Hollmén, J.: Feature extraction and selection from vibration measurements for structural health monitoring. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 213–224. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Vesanto, J., Alhoniemi, E., Himberg, J., Kiviluoto, K., Parviainen, J.: Self-organizing map for data mining in MATLAB: The SOM toolbox. Simulation News Europe 9(25), 54 (1999)

    Google Scholar 

  21. Worden, K., Farrar, C.R., Manson, G., Park, G.: The fundamental axioms of structural health monitoring. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 463(2082), 1639–1664 (2007)

    Article  Google Scholar 

  22. Worden, K., Manson, G.: The application of machine learning to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365(1851), 515–537 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toivola, J., Prada, M.A., Hollmén, J. (2010). Novelty Detection in Projected Spaces for Structural Health Monitoring. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds) Advances in Intelligent Data Analysis IX. IDA 2010. Lecture Notes in Computer Science, vol 6065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13062-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13062-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13061-8

  • Online ISBN: 978-3-642-13062-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics