Skip to main content

Sulfidic Mine Wastes

  • Chapter
  • First Online:
Mine Wastes

Abstract

Sulfide minerals are common minor constituents of the Earth’s crust. In some geological environments, sulfides constitute a major proportion of rocks. In particular, metallic ore deposits (Cu, Pb, Zn, Au, Ni, U, Fe), phosphate ores , coal seam s, oil shales , and mineral sands may contain abundant sulfides. Mining of these resources can expose the sulfides to an oxygenated environment. In fact, large volumes of sulfide minerals can be exposed in: tailings dams ; waste rock dumps; coal spoil heaps; heap leach piles ; run-of-mine and low-grade ore stockpiles; waste repository embankments; open pit floors and faces; underground workings ; haul roads; road cuts; quarries; and other rock excavations. When the sulfides are exposed to the atmosphere or oxygenated ground water, the sulfides will oxidize to produce an acid water laden with sulfate, heavy metal s and metalloids. The mineral pyrite (FeS2) tends to be the most common sulfide mineral present. The weathering of this mineral at mine sites causes the largest, and most testing, environmental problem facing the industry today – acid mine drainage (AMD ) (Scientific Issue 2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aachid M, Mbonimpa M, Aubertin M (2004) Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water Air Soil Poll 156:163–193

    Google Scholar 

  • Abraitis PK, Pattrick RAD, Kelsall GH, Vaughan DJ (2004) Acid leaching and dissolution of major sulphide ore minerals: processes and galvanic effects in complex systems. Min Mag 68:343–351

    Google Scholar 

  • Abreu MM, Matias MJ, Magalhães MCF, Basto MJ (2008a) Impacts on water, soil and plants from the abandoned Miguel Vacas copper mine, Portugual. J Geochem Explor 96:161–170

    Google Scholar 

  • Abreu MM, Tavares MT, Batista MJ (2008b) Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos, Portugual. J Geochem Explor 96:210–222

    Google Scholar 

  • Acero P, Cama J, Ayora C (2007a) Rate law for galena dissolution in acidic environment. Chem Geol 245:219–229

    Google Scholar 

  • Acero P, Ayora C, Carrera J (2007c) Coupled thermal, hydraulic and geochemical evolution of pyritic tailings in unsaturated column experiments. Geochim Cosmochim Acta 71:5325–5338

    Google Scholar 

  • Ackman TE (2003) An introduction to the use of airborne technologies for watershed characterization in mined areas. Mine Water Environ 22:62–68

    Google Scholar 

  • Agricola G (1546) De natura fossilium (trans: Bandy MC, Bandy JA (2004)). Dover Publications, New York

    Google Scholar 

  • Agricola G (1556) De re metallica (trans: Hoover HC, Hoover LH (1950)). Dover Publications, New York

    Google Scholar 

  • Al TA, Martin CJ, Blowes DW (2000) Carbonate-mineral/water interactions in sulfide-rich mine tailings. Geochim Cosmochim Acta 64:3933–3948

    Google Scholar 

  • Alakangas L, Öhlander B (2006a) Formation and composition of cemented layers in low-sulphide mine tailings, Laver, northern Sweden. Environ Geol 50:809–819

    Google Scholar 

  • Alakangas L, Öhlander B (2006b) Pilot-scale studies of different covers on unoxidised sulphide-rich tailings in northern Sweden: the geochemistry of leachate waters. Mine Water Environ 25:171–183

    Google Scholar 

  • Alpers CN, Blowes DW, Nordstrom DK, Jambor JL (1994) Secondary minerals and acid mine-water chemistry. In: Jambor JL, Blowes DW (eds) Environmental geochemistry of sulfide mine-wastes, vol 22. Mineralogical Association of Canada, Nepean, pp 247–270 (Short course handbook)

    Google Scholar 

  • Anawar HM, Garcia-Sanchez A, Murciego A, Buyolo T (2006) Exposure and bioavailability of arsenic in contaminated soils from the La Parrilla mine, Spain. Environ Geol 50:170–179

    Google Scholar 

  • Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415

    Google Scholar 

  • Ardau C, Blowes DW, Ptacek CJ (2009) Comparison of laboratory testing protocols to field observations of the weathering of sulfide-bearing mine tailings. J Geochem Explor 100:182–191

    Google Scholar 

  • Ashley PM, Lottermoser BG (1999a) Geochemical, mineralogical and biogeochemical characterisation of abandoned metalliferous mine sites, southern New England Orogen. In: Proceedings of the NEO’99 Conference. Armidale, Division of Earth Sciences, University of New England, pp 409–418

    Google Scholar 

  • Ashley PM, Lottermoser BG (1999b) Arsenic contamination at the Mole River mine, northeastern New South Wales, Australia. Austral J Earth Sci 46:861–874

    Google Scholar 

  • Ashley PM, Lottermoser BG, Chubb AJ (2003a) Environmental geochemistry of the Mt Perry copper mines area, southeast Queensland, Australia. Geochem Explor Environ Anal 3:345–357

    Google Scholar 

  • Ashley PM, Lottermoser BG, Collins A, Grant CD (2004) Environmental geochemistry of the derelict Webbs Consols mine, New South Wales, Australia. Environ Geol 46:596–609

    Google Scholar 

  • Avery ER, Benning LG (2008) Anaerobic pyrite oxidation rates determined via direct volume-loss measurements: a Vertical Scanning Interferometric approach. Mineral Mag 72:15–18

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate chemical elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    Google Scholar 

  • Banks D, Younger PL, Arnesen R-T, Iversen ER, Banks SB (1997) Mine-water chemistry; the good, the bad and the ugly. Environ Geol 32:157–174

    Google Scholar 

  • Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Poll 127, 73–82

    Google Scholar 

  • Batista MJ, Abreu MM, Serrano Pinto M (2007) Biogeochemistry in Neves Corvo mining region, Iberian Pyrite Belt, Portugual. J Geochem Explor 92:159–176

    Google Scholar 

  • Belzile N, Chen YW, Cai MF, Li Y (2004) A review on pyrrhotite oxidation. J Geochem Explor 84:65–76

    Google Scholar 

  • Bennett JW, Gibson DK, Ritchie AIM, Tan Y, Broman PG, Jönsson H (1994) Oxidation rates and pollution loads in drainage; correlation of measurements in a pyritic waste rock dump. In: Proceedings of the international land reclamation and mine drainage conference and 3rd international conference on the abatement of acidic drainage, vol 1. United States Department of the Interior, Bureau of Mines Special Publication SP06A-94, pp 401–409

    Google Scholar 

  • Bennett JW, Timms GP, Ritchie AIM (1999) The effectiveness of the covers on waste rock dumps at Rum Jungle and the impact in the long term. In: Proceedings of the 24th annual Minerals Council of Australia environmental workshop. Minerals Council of Australia, Dickson, pp 379–388

    Google Scholar 

  • Bennett MW, Kempton JH, Maley PJ (1997) Applications of geological block models to environmental management. In: Proceedings from the 4th international conference on acid rock drainage, vol 1. Vancouver, pp 293–303

    Google Scholar 

  • Benzaazoua M, Bussiere B, Dagenais AM, Archambault M (2004) Kinetic test comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ Geol 46:1086–1101

    Google Scholar 

  • Berger AC, Bethke CM, Krumhansl JL (2000) A process model of natural attentuation in drainage from a historic mining district. Appl Geochem 15:655–666

    Google Scholar 

  • Bernier L, Warren LA (2007) Geochemical diversity in S processes mediated by culture-adapted and environmental-enrichments of Acidithiobacillus spp. Geochim Cosmochim Acta 71:5684–5697

    Google Scholar 

  • Bethune KJ, Lockington DA, Williams DJ (1997) Acid mine drainage: comparison of laboratory testing to mine site conditions. In: Proceedings from the 4th international conference on acid rock drainage, vol 1. Vancouver, pp 306–318

    Google Scholar 

  • Bigham JM, Nordstrom DK (2000) Iron and aluminium hydroxysulfates from acid sulfate waters. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals: crystallography, geochemistry and environmental significance, vol 40. Mineralogical Society of America, Washington, DC, pp 351–403 (Reviews in mineralogy and geochemistry)

    Google Scholar 

  • Blowes DW, Ptacek CJ (1994) Acid-neutralization mechanisms in inactive mine tailings. In: Jambor JL, Blowes DW (eds) Environmental geochemistry of sulfide mine-wastes, vol 22. Mineralogical Association of Canada, Nepean, pp 271–292 (Short course handbook)

    Google Scholar 

  • Blowes DW, Reardon EJ, Jambor JL, Cherry JA (1991) The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochim Cosmochim Acta 55:965–978

    Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL (1994) Remediation and prevention of low-quality drainage from tailings impoundments. In: Jambor JL, Blowes DW (eds) Environmental geochemistry of sulfide mine-wastes, vol 22. Mineralogical Association of Canada, Nepean, pp 365–380 (Short course handbook)

    Google Scholar 

  • Blowes DW, Jambor JL, Hanton-Fong CJ, Lortie L, Gould WD (1998) Geochemical, mineralogical and microbiological characterization of a sulphide-bearing carbonate-rich gold-mine tailings impoundment, Joutel, Québec. Appl Geochem 13:687–705

    Google Scholar 

  • Bond PL, Druschel GK, Banfield JE (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971

    Google Scholar 

  • Boon M, Snijder M, Hansfrod GS, Heijnen JJ (1998) The oxidation kinetics of zinc sulphide with Thiobacillus ferrooxidans. Hydrometallurgy 48:171–186

    Google Scholar 

  • Boorman RS, Watson DM (1976) Chemical processes in abandoned sulphide tailings dumps and environmental implication for northeastern New Brunswick. CIM Bulletin 69:86–96

    Google Scholar 

  • Borden R (2001) Geochemical evolution of sulphide-bearing waste rock soils at the Bingham Canyon mine, Utah. Geochem Explor Environ Anal 1:15–22

    Google Scholar 

  • Bordon RK, Black R (2005) Volunteer revegetation of waste rock surfaces at the Bingham Canyon mine, Utah. J Environ Qual 34:2234–2242

    Google Scholar 

  • Bosso ST, Enzweiler J, Angelica RS (2008) Lead bioaccessibility in soil and mine wastes after immobilization with phosphate. Water Air Soil Poll 195:257–273

    Google Scholar 

  • Briggs TJ, Kelso IJ (2003) Ammonium nitrate-sulfide reactivity at the Century Zn-Pb-Ag mine, northwest Queensland, Australia. Expl Min Geol 10:177–190

    Google Scholar 

  • Bril H, Zainoun K, Puziewicz J, Courtin-Nomade A, Vanaecker M, Bollinger JC (2008) Secondary phases from the alteration of a pile of zinc-smelting slag as indicators of environmental conditions: an example from Swietochlowice, Upper Silesia, Poland. Can Mineral 46:1235–1248

    Google Scholar 

  • Brown M, Barley B, Wood H (2002) Minewater treatment: technology, application and policy. International Water Association Publishing

    Google Scholar 

  • Bruce S, Noller B, Matanitobua V, Ng J (2007) In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials. J Toxicol Environ Health 70:1700–1711

    Google Scholar 

  • Bryan CG, Hallberg KB, Johnson DB (2006) Mobilisation of metals in mineral tailings at the abandoned São Domingos copper mine (Portugual) by indigenous acidophilic bacteria. Hydrometallurgy 83:184–194

    Google Scholar 

  • Bullock SET, Bell FG (1997) Some problems associated with past mining at a mine in the Witbank coalfield, South Africa. Environ Geol 33:61–71

    Google Scholar 

  • Bussière B, Benzaazoua M, Aubertin M, Mbonimpa M (2004) A laboratory study of covers made of low-sulphide tailings to prevent acid mine drainage. Environ Geol 45:609–622

    Google Scholar 

  • Cabral A, Lefebvre G, Proulx ME, Audet C, Labbé M, Michaud C (1997) Use of deinking residues as cover material in the prevention of AMD generation at an abandoned mine site. In: Tailings and mine waste ’97. Balkema, Rotterdam, pp 257–266

    Google Scholar 

  • Campbell AR, Lueth VW (2008) Isotopic and textural discrimination between hypogene, ancient supergene, and modern sulfates at the Questa mine, New Mexico. Appl Geochem 23:308–319

    Google Scholar 

  • Cappuyns V, Swennen R, Niclaes M (2007) Application of the BCR sequential extraction scheme to dredged pond sediments contaminated by Pb-Zn mining: a combined geochemical and mineralogical approach. J Geochem Explor 93:78–90

    Google Scholar 

  • Casagrande DJ, Finkelman RB, Caruccio FT (1989) The nonparticipation of organic sulfur in acid mine drainage. Environ Geochem Health 11:187–192

    Google Scholar 

  • Cathles LM (1994) Attempts to model the industrial-scale leaching of copper-bearing mine waste. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society Symposium Series 550, Washington, DC, pp 123–131

    Google Scholar 

  • Chermak JA, Runnells DD (1996) Self-sealing hardpan barriers to minimize infiltration of water into sulfide-bearing overburden, ore, and tailings piles. In: Tailings and mine waste ’96. Balkema, Rotterdam, pp 265–273

    Google Scholar 

  • Chopin EIB, Alloway BJ (2007) Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air Soil Poll 182:245–261

    Google Scholar 

  • Chrysochoou M, Dermatas D, Grubb DG (2007) Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate. J Haz Mat 144:1–14

    Google Scholar 

  • Cidu R, Fanfani L (2002) Overview of the environmental geochemistry of mining districts in southwestern Sardinia, Italy. Geochem Explor Environ Anal 2:243–251

    Google Scholar 

  • Conesa HM, Schulin R, Nowack B (2007) A laboratory study on revegetation and metal uptake in native plant species from neutral mine tailings. Water Air Soil Pollut 183:201–212

    Google Scholar 

  • Conesa HM, Robinson BH, Schulin R, Nowack B (2008) Metal extractability in acidic and neutral mine tailings from the Cartagena-La Unión Mining District (SE Spain). Appl Geochem23:1232–1240

    Google Scholar 

  • Cook T, Skousen J, Hilton T (2008) Covering pre-existing, acid-producing fills with alkaline sandstone to control acid mine drainage. Mine Water Environ 27:259–264

    Google Scholar 

  • Corkhill CL, Vaughan DJ (2009) Arsenopyrite oxidation. Appl Geochem 24:2342–2361

    Google Scholar 

  • Corkhill CL, Wincott PL, Lloyd JR, Vaughan DJ (2008) The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochim Cosmochim Acta 72:5616–5633

    Google Scholar 

  • Cornejo-Garrido H, Fernández-Lomelín P, Guzmán J, Cervini-Silva J (2008) Dissolution of arsenopyrite (FeAsS) and galena (PbS) in the presence of desferrioxamine-B at pH 5. Geochim Cosmochim Acta 72:2754–2766

    Google Scholar 

  • Courtin-Nomade A, Grosbois C, Marcus MA, Fakra SC, Beny JM, Foster AL (2009) The weathering of a sulfide orebody: speciation and fate of some potential contaminants. Can Mineral 47:493–508

    Google Scholar 

  • Cousins C, Penner GH, Liu B, Beckett P, Spiers G (2009) Organic matter degradation in paper sludge amendments over gold mine tailings. Appl Geochem 24:2293–2300

    Google Scholar 

  • Craw D, Chappell D, Nelson M, Walrond M (1999) Consolidation and incipient oxidation of alkaline arsenopyrite-bearing mine tailings, Macreas Mine, New Zealand. Appl Geochem 14:485–498

    Google Scholar 

  • Craw D, Rufaut CG, Hammit S, Clearwater SG, Smith CM (2007a) Geological controls on natural ecosystem recovery on mine waste in southern New Zealand. Environ Geol 51:1389–1400

    Google Scholar 

  • Craw D, Rufaut C, Haffert L, Paterson L (2007b) Plant colonization and arsenic uptake on high arsenic mine wastes, New Zealand. Water Air Soil Poll 179:351–364

    Google Scholar 

  • Crock JG, Arbogast BF, Lamothe PJ (1999) Laboratory methods for the analysis of environmental samples. In: Plumlee GS, Logsdon MS (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues, vol 6A. Society of Economic Geologists, Littleton, pp 265–287 (Reviews in economic geology)

    Google Scholar 

  • Cruz R, Bertrand V, Monroy M, Ganzalez I (2001a) Effect of sulfide impurities on the reactivity of pyrite and pyritic concentrates; a multi-tool approach. Appl Geochem 16:803–819

    Google Scholar 

  • Cruz R, Mendez BA, Monroy M, Gonzalez I (2001b) Cyclic voltammetry applied to evaluate reactivity in sulfide mining residues. Appl Geochem 16:1631–1640

    Google Scholar 

  • Currey NA, Ritchie PJ, Durham AJP, Wilson GW (1999) Field performance and optimisation of two low flux soil cover systems for the prevention of acid mine drainage in a semi arid environment. In: Proceedings of the 24th annual Minerals Council of Australia environmental workshop. Minerals Council of Australia, Dickson, pp 458–465

    Google Scholar 

  • Dalton JB, King TVV, Bove DJ, Kokaly RF, Clark RN, Vance JS, Swayze GA (2000) Distribution of acid-generating and acid-buffering minerals in the Animas River watershed as determined by AVIRIS spectroscopy. In: Proceedings from the 5th international conference on acid rock drainage, vol 2. Society for Mining, Metallurgy, and Exploration, Littleton, pp 1541–1550

    Google Scholar 

  • Dermatas D, Chrysochoou M, Grubb DG, Xu X (2008) Phosphate treatment of firing range soils: lead fixation or phosphorus release? J Environ Qual 37:47–56

    Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry; fundamentals and applications to contamination. Lewis Publishers, Boca Raton

    Google Scholar 

  • Díez M, Simón M, García I, Martín F (2009) Assessment of the critical load of trace elements in soils polluted by pyrite tailings. A laboratory experiment. Water Air Soil Poll 199:381–387

    Google Scholar 

  • Dinelli E, Tateo F (2001) Sheet silicates as effective carriers of heavy metals in the ophiolitic mine area of Vigonzano (northern Italy). Mineral Mag 65:121–132

    Google Scholar 

  • Dobos SK (2000) Potential problems with geologically uncontrolled sampling and the interpretation of chemical tests for waste characterisation and AMD prediction. 4th Australian workshop on acid mine drainage. Australian Centre for Mining Environmental Research, Brisbane

    Google Scholar 

  • Dokoupilová P, Sracek O, Losos Z (2007) Geochemical behavior and mineralogical transformations during spontaneous combustion of a coal waste pile in Oslavany, Czech Republic. Mineral Mag 71:443–460

    Google Scholar 

  • Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor 80:55–68

    Google Scholar 

  • Domvile SJ, Li MG, Sollner DD, Nesbitt W (1994) Weathering behaviour of mine tailings and waste rock: a surface investigation. In: Proceedings of the international land reclamation and mine drainage conference and 3rd international conference on the abatement of acidic drainage, vol 1. United States Department of the Interior, Bureau of Mines Special Publication SP06A-94, pp 167–176

    Google Scholar 

  • Druschel GK, Emerson D, Sutka R, Suchecki P, Luther GW III (2008) Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron (II) oxidizing microorganisms. Geochim Cosmochim Acta 72:3358–3370

    Google Scholar 

  • Durães N, Bobos I, Ferreira da Silva E (2008) Chemistry and FT-IR spectroscopic studies of plants from contaminated mining sites in the Iberian Pyrite Belt, Portugual. Mineral Mag 72:405–409

    Google Scholar 

  • Ebenå G, Hagberg J, Carlsson E (2007) Origin and distribution of low molecular weight organic acids and bacteria in a depth profile of a soil covered tailings impoundment in northern Sweden. J Geochem Explor 92:186–195

    Google Scholar 

  • Elberling B, Schippers A, Sand W (2000) Bacterial and chemical oxidation of pyritic mine tailings at low temperatures. J Contam Hydrol 41:225–238

    Google Scholar 

  • Elberling BO, Søndergaard J, Jensen LA, Schmidt LB, Hansen BU, Asmund G, Balić-Zunić T, Hollesen J, Hanson S, Jansson PE, Friborg T (2007) Arctic vegetation damage by winter-generated coal mining pollution released upon thawing. Environ Sci Technol 41:2407–2413

    Google Scholar 

  • Elliott LCM, Liu L, Stogran SW (1997) Evaluation of single layer organic and inorganic cover materials for oxidized tailings. In: Tailings and mine waste ’97. Balkema, Rotterdam, pp 247–256

    Google Scholar 

  • Ettler V, Legendre O, Bodénan F, Touray JC (2001) Primary phases and natural weathering of old lead-zinc pyrometallurgical slag from Pribram, Czech Republic. Can Mineral 39:873–888

    Google Scholar 

  • Ettler V, Piantone P, Touray JC (2003) Mineralogical control on inorganic contaminant mobility in leachate from lead-zinc metallurgical slag: experimental approach and long-term assessment. Mineral Mag 67:1269–1283

    Google Scholar 

  • Ettler V, Johan Z, Kříbek B, Šebek O, Mihaljevič (2009) Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Appl Geochem 24:1–15

    Google Scholar 

  • Ettner DC, Braastad G (1999) Induced hardpan formation in a historic tailings impoundment, Røros, Norway. In: Tailings and mine waste ’99. Balkema, Rotterdam, pp 457–464

    Google Scholar 

  • Eusden JD, Gallagher L, Eighmy TT, Crannell BS, Krzanowski JE, Butler LG, Cartledge FK, Emery EF, Shaw EL, Francis CA (2002) Petrographic and spectroscopic characterization of phosphate-stabilized mine tailings from Leadville, Colorado. Waste Manag 22:117–135

    Google Scholar 

  • Evangelou VP (1995) Pyrite oxidation and its control. CRC Press, Boca Raton

    Google Scholar 

  • Evangelou VP (1996) Pyrite oxidation inhibition in coal waste by PO4 and H2O2 pH buffered pre-treatment. Int J Surf Min Reclam Environ 10:135–142

    Google Scholar 

  • Evangelou VP (1998) Pyrite chemistry: the key for abatement of acid mine drainage. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes: acid mine drainage, limnology and reclamation. Springer, Heidelberg, pp 197–222

    Google Scholar 

  • Evangelou VP (2001) Pyrite microencapsulation technologies: principles and potential field applications. Ecol Eng 17:165–178

    Google Scholar 

  • Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Environ Sci Technol 25:141–199

    Google Scholar 

  • Falk H, Lavergren U, Bergbäck B (2006) Metal mobility in alum shale from Öland, Sweden. J Geochem Explor 90:157–165

    Google Scholar 

  • Farkas IM, Weiszburg TG, Pekker P, Kuzmann E (2009) A half-century of environmental mineral formation on a pyrite-bearing waste dump in the Mátra Mountains, Hungary. Can Mineral 47:509–524

    Google Scholar 

  • Fernández-Caliani JC, Barba-Brioso C, González I, Galán E (2009) Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Poll 200:211–226

    Google Scholar 

  • Ferrier G, Hudson-Edwards KA, Pope RJ (2009) Characterisation of the environmental impact of the Rodalquilar mine, Spain by ground-based reflectance spectroscopy. J Geochem Explor 100:11–19

    Google Scholar 

  • Ficklin WH, Mosier EL (1999) Field methods for sampling and analysis of environmental samples for unstable and selected stable constituents. In: Plumlee GS, Logsdon MS (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues, vol 6A. Society of Economic Geologists, Littleton , pp 249–264 (Reviews in economic geology)

    Google Scholar 

  • Forsberg LS, Ledin S (2003) Effects of iron precipitation and organic amendments on porosity and penetrability in sulphide mine tailings. Water Air Soil Poll 142:395–408

    Google Scholar 

  • Forsberg LS, Gustafsson JP, Kleja DB, Ledin S (2008) Leaching of metals from oxidising sulphide mine tailings with and without sewage sludge application. Water Air Soil Pollut 194:331–341

    Google Scholar 

  • Fowler TA, Holmes PR, Crundwell FK (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65:2987–2993

    Google Scholar 

  • Frau F (2000) The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy; environmental implications. Mineral Mag 64:995–1006

    Google Scholar 

  • Frostad S, Klein B, Lawrence RW (2002) Evaluation of laboratory kinetic test methods for measuring rates of weathering. Mine Water Environ 21:183–192

    Google Scholar 

  • Furman O, Strawn DG, Heinz GH, Williams B (2006) Risk assessment test for lead bioaccessibility to waterfowl in mine-impacted soils. J Environ Qual 35:450–458

    Google Scholar 

  • Ganne P, Cappuyns V, Vervoort A, Buvé, Swennen R (2006) Leachability of heavy metals and arsenic from slags of metal extraction industry at Angleur (eastern Belgium). Sci Total Environ 356:69–85

    Google Scholar 

  • Georgopoulou ZJ, Fytas K, Soto H, Evangelou B (1996) Feasibility and cost of creating an iron-phosphate coating on pyrrhotite to prevent oxidation. Environ Geol 28:61–69

    Google Scholar 

  • Gibson DK, Ritchie AIM (1991) Options to control acid generation in existing pyritic mine waste dumps. In: Randol Gold Forum Cairns ’91, pp 109–111

    Google Scholar 

  • Gleisner M, Herbert RB Jr, Frogner Kockum PC (2006) Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chem Geol 225:16–29

    Google Scholar 

  • Goh SW, Buckley AN, Lamb RN, Rosenberg RA, Moran D (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochim Cosmochim Acta 70:2210–2228

    Google Scholar 

  • Gomes MEP, Favas PJC (2006) Mineralogical controls on mine drainage of the abandoned Ervedosa tin mine in north-eastern Portugal. Appl Geochem 21:1322–1334

    Google Scholar 

  • Gould WD, Bechard G, Lortie L (1994) The nature and role of microorganisms in the tailings environment. In: Jambor JL, Blowes DW (eds) Environmental geochemistry of sulfide mine-wastes, vol 22. Mineralogical Association of Canada, Nepean, pp 185–199 (Short course handbook)

    Google Scholar 

  • Gould WD, Kapoor A (2003) The microbiology of acid mine drainage. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes, vol 31. Mineralogical Association of Canada, Nepean, pp 203–226 (Short course handbook)

    Google Scholar 

  • Graupner T, Kassahun A, Rammlmair D, Meima JA, Kock D, Furche M, Fiege A, Schippers A, Melcher F (2007) Formation of sequences of cemented layers and hardpans within sulfide-bearing mine tailings (mine district Freiberg, Germany). Appl Geochem 22:2486–2508

    Google Scholar 

  • Hakkou R, Benzaazoua M, Bussière B (2008a) Acid mine drainage at the abandoned Kettara mine (Morocco): 1. Environmental characterization. Mine Water Environ 27:145–159

    Google Scholar 

  • Hakkou R, Benzaazoua M, Bussière B (2008b) Acid mine drainage at the abandoned Kettara mine (Morocco): 2. Mine waste geochemical behavior. Mine Water Environ 27:160–170

    Google Scholar 

  • Hallberg KB, Johnson DB (2005) Mine water microbiology. Mine Water Environ 24:28–37

    Google Scholar 

  • Harmer SL, Thomas JE, Fornasiero D, Gerson AR (2006) The evolution of surface layers formed during chalcopyrite leaching. Geochim Cosmochim Acta 70:4392–4402

    Google Scholar 

  • Harries JR, Ritchie AIM (1987) The effect of rehabilitation on the rate of oxidation of pyrite in a mine waste rock dump. Environ Geochem Health 9:27–36

    Google Scholar 

  • Harris DL, Lottermoser BG (2006a) Phosphate stabilization of polyminerallic mine wastes. Mineral Mag 70:1–13

    Google Scholar 

  • Heikkinen PM, Räisänen ML (2008) Mineralogical and geochemical alteration of Hitura sulphide mine tailings with emphasis on nickel mobility and retention. J Geochem Explor 97:1–20

    Google Scholar 

  • Heikkinen PM, Räisänen ML (2009) Trace metal and As solid-phase speciation in sulphide mine tailings – indicators of spatial distribution of sulphide oxidation in active tailings impoundments. Appl Geochem 24:1224–1237

    Google Scholar 

  • Hita R, Torrent J, Bigham JM (2006) Experimental oxidative dissolution of sphalerite in the Aznalcóllar sludge and other pyrite matrices. J Environ Qual 35:1032–1039

    Google Scholar 

  • Hodson ME (2006) Does reactive surface area depend on grain size? Results from pH 3, 25˚C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite. Geochim Cosmochim Acta 70:1655–1667

    Google Scholar 

  • Hojdová M, Navrátil T, Rohovec J, Penížek V, Grygar T (2009) Mercury distribution and speciation in soils affected by historic mercury mining. Water Air Soil Pollut 200:89–99

    Google Scholar 

  • Hollings P, Hendry MJ, Nicholson RV, Kirkland RA (2001) Quantification of oxygen consumption and sulphate release rates for waste rock piles using kinetic cells; Cluff lake uranium mine, northern Saskatchewan, Canada. Appl Geochem 16:1215–1230

    Google Scholar 

  • Holmström H, Ljungberg J, Ekström M, Öhlander B (1999) Secondary copper enrichment in tailings at the Laver mine, northern Sweden. Environ Geol 38:327–342

    Google Scholar 

  • Huang X, Evangelou VP (1994) Suppression of pyrite oxidation rate by phosphate addition: In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society Symposium Series 550, Washington, DC, pp 562–573

    Google Scholar 

  • Hudson-Edwards KA, Schell C, Macklin MG (1999) Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl Geochem 14:1015–1030

    Google Scholar 

  • Hudson-Edwards KA, Edwards SJ (2005) Mineralogical controls on storage of As, Cu, Pb and Zn at the abandoned Mathiatis massive sulphide mine, Cyprus. Mineral Mag 69:695–706

    Google Scholar 

  • Hughes J, Craw D, Peake B, Lindsay P, Weber P (2007) Environmental characterization of coal mine waste rock in the field: an example from New Zealand. Environ Geol 52:1501–1509

    Google Scholar 

  • Hulshof AHM, Blowes DW, Gould WD (2006) Evaluation of in situ layers for treatment of acid mine drainage: a field comparison. Water Res 40:1816–1826

    Google Scholar 

  • Hutchison I, Ellison R (1992) Mine waste management. Lewis Publishers, Boca Raton

    Google Scholar 

  • Ibrahim KM, Jaber JO (2007) Geochemistry and environmental impacts of retorted oil shale from Jordan. Environ Geol 52:979–984

    Google Scholar 

  • Jambor JL (1994) Mineralogy of sulfide-rich tailings and their oxidation products. In: Jambor JL, Blowes DW (eds) Environmental geochemistry of sulfide mine-wastes, vol 22. Mineralogical Association of Canada, Nepean, pp 59–102 (Short course handbook)

    Google Scholar 

  • Jambor JL (2000) The relationship of mineralogy to acid- and neutralization-potential values in ARD. In: Cotter-Howells JD, Campbell LS, Valsami-Jones E, Batchelder M (eds) Environmental mineralogy; microbial interactions, anthropogenic influences, contaminated land and waste management. Mineralogical Society Series no 9. Mineralogical Society, London, pp 141–159

    Google Scholar 

  • Jambor JL (2003) Mine-waste mineralogy and mineralogical perspectives of acid-base accounting. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes, vol 31. Mineralogical Association of Canada, Nepean, pp 117–145 (Short course handbook)

    Google Scholar 

  • Jambor JL, Nordstrom DK, Alpers CN (2000a) Metal sulfate salts from sulfide mineral oxidation. In: Alpers CN, Jambor JL, Nordstrom (eds) Sulfate minerals; crystallography, geochemistry and environmental significance, vol 40. Mineralogical Society of America, Washington, DC, pp 303–350 (Reviews in mineralogy and geochemistry)

    Google Scholar 

  • Jambor JL, Dutrizac JE, Chen TT (2000c) Contribution of specific minerals to the neutralization potential in static tests. In: Proceedings from the 5th international conference on acid rock drainage, vol 1. Society for Mining, Metallurgy, and Exploration, Littleton, pp 551–565

    Google Scholar 

  • Jambor JL, Dutrizac JE, Raudsepp M, Groat LA (2003) Effect of peroxide on neutralization-potential values of siderite and other carbonate minerals. J Environ Qual 32:2373–2378

    Google Scholar 

  • Jambor JL, Dutrizac JE, Raudsepp M (2007) Measured and computed neutralization potentials from static tests of diverse rock types. Environ Geol 52:1019–1031

    Google Scholar 

  • Janzen MP, Nicholson RV, Scharper JM (2000) Pyrrhotite reaction kinetics; reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochim Cosmochim Acta 64:1511–1522

    Google Scholar 

  • Jennings SR, Dollhopf DJ, Inskeep WP (2000) Acid production from sulfide minerals using hydrogen peroxide weathering. Appl Geochem 15:235–243

    Google Scholar 

  • Jerz JK, Rimstidt JD (2003) Efflorescent iron sulfate minerals: paragenesis, relative stability, and environmental impact. Am Mineral 88:1919–1932

    Google Scholar 

  • Jiménez-Cárceles FJ, Álvarez-Rogel J, Alcaraz HM (2008) Trace element concentrations in saltmarsh soils strongly affected by wastes from metal sulphide mining areas. Water Air Soil Poll 188:283–295

    Google Scholar 

  • Jin S, Fallgren PH, Morris JM, Gossard RB (2008a) Biological source treatment of acid mine drainage using microbial and substrate amendments: microcosm studies. Mine Water Environ 27:20–30

    Google Scholar 

  • Jones RA, Koval SF, Nesbitt HW (2003) Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochim Cosmochim Acta 67:955–965

    Google Scholar 

  • Johnson DB (1998a) Biological abatement of acid mine drainage: the role of acidophilic protozoa and other indigenous microflora. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes. Springer, Heidelberg, pp 285–301

    Google Scholar 

  • Kalin M, Harris B (2005) Chemical precipitates within pyritic waste rock. Hydrometallurgy 78:209–225

    Google Scholar 

  • Kargbo DM, He J (2004) A simple accelerated rock weathering method to predict acid generation kinetics. Environ Geol 46:775–783

    Google Scholar 

  • Karpenko V, Norris JA (2002) Vitriol in the history of chemistry. Chem Listy 96:997–1005

    Google Scholar 

  • Keith CN, Vaughan DJ (2000) Mechanisms and rates of sulphide oxidation in relation to the problems of acid rock (mine) drainage. In: Cotter-Howells JD, Campbell LS, Valsami-Jones E, Batchelder M (eds) Environmental mineralogy; microbial interactions, anthropogenic influences, contaminated land and waste management. Mineralogical Society Series no 9. Mineralogical Society, London, pp 117–139

    Google Scholar 

  • Kelepertsis A, Argyraki A, Alexakis D (2006) Multivariate statistics and spatial interpretation of geochemical data for assessing soil contamination by potentially toxic elements in the mining area of Stratoni, north Greece. Geochem Explor Environ Anal 6:349–355

    Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Google Scholar 

  • Kierczak J, Néel C, Puziewicz J, Bril H (2009) The mineralogy and weathering of slag produced by the smelting of lateritic Ni ores, Szklary, southwestern Poland. Can Mineral 47:557–572

    Google Scholar 

  • Kilgour DW, Moseley RB, Barnett MO, Savage KS, Jardine PM (2008) Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil. J Environ Qual 35:1733–1740

    Google Scholar 

  • Kim H, Benson CH (2004) Contributions of advective and diffusive oxygen transport through multilayer composite caps over mine waste. J Contam Hydrol 71:193–218

    Google Scholar 

  • Kleinmann RLP (1997) Mine drainage systems. In: Marcus JJ (ed) Mining environmental handbook: effects of mining on the environment and American environmental controls on mining. Imperial College Press, London, pp 237–244

    Google Scholar 

  • Kleinmann RLP (1998) Bactericidal control of acidic drainage. In: Coal mine drainage prediction and pollution prevention in Pennsylvania. The Pennsylvania Department of Environmental Protection, Chapter 15, pp 15–1 to 15–6

    Google Scholar 

  • Kock D, Schippers A (2006) Geomicrobiological investigation of two different mine waste tailings generating acid mine drainage. Hydrometallurgy 83:167–175

    Google Scholar 

  • Kolker A, Huggins FE (2007) Progressive oxidation of pyrite in five bituminous coal samples: an As XANES and Fe Mössbauer spectroscopic study. Appl Geochem 22:778–787

    Google Scholar 

  • Koski RA, Munk L, Foster AL, Shanks WC III, Stillings LL (2008) Sulfide oxidation and distribution of metals near abandoned copper mines in coastal environments, Prince William Sound, Alaska, USA. Appl Geochem 23:227–254

    Google Scholar 

  • Kucha H , Martens A, Ottenburgs R, De Vos W, Viaene W (1996) Primary minerals of Zn-Pb mining and metallurgical dumps and their environmental behavior at Plombieres, Belgium. Environ Geol 27:1–15

    Google Scholar 

  • Kuechler R, Noack K (2007) Comparison of the solution behavior of a pyrite-calcite mixture in batch and unsaturated sand column. J Contam Hydrol 90:203–220

    Google Scholar 

  • Kwong YTJ (1993) Mine site acid rock drainage assessment and prevention; a new challenge for a mining geologist. In: Proceedings of the international mining geology conference, Kalgoorlie, pp 213–217

    Google Scholar 

  • Kwong YTJ, Swerhone GW, Lawrence JR (2003) Galvanic sulphide oxidation as a metal-leaching mechanism and its environmental implications. Geochem Explor Environ Anal 3:337–343

    Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Lasaga AC, Berner RA (1998) Fundamental aspects of quantitative models for geochemical cycles. Chem Geol 145:161–175

    Google Scholar 

  • Lavergren U, Åström ME, Bergbäck B, Holmström H (2009) Mobility of trace elements in black shale assessed by leaching tests and sequential chemical extraction. Geochem Explor Environ Anal 9:71–79

    Google Scholar 

  • Lawrence RW, Scheske M (1997) A method to calculate the neutralization potential of mining wastes. Environ Geol 32:100–106

    Google Scholar 

  • Ledin M, Pedersen K (1996) The environmental impact of mine wastes; roles of microorganisms and their significance in treatment of mine wastes. Earth-Sci Rev 41:67–108

    Google Scholar 

  • Lee CSL, Qi SH, Zhang G, Luo CL, Zhao LYL, Li XD (2008) Seven thousand years of records on the mining and utilization of metals from lake sediments in central China. Environ Sci Technol 42:4732–4738

    Google Scholar 

  • Lehner S, Savage K (2008) The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: batch and flow-through reactor experiments with synthetic pyrite. Geochim Cosmochim Acta 72:1788–1800

    Google Scholar 

  • Lehner S, Savage K, Ciobanu M, Cliffel DE (2007) The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: an electrochemical study of synthetic pyrite. Geochim Cosmochim Acta 71:2491–2509

    Google Scholar 

  • Lengke MF, Tempel RN (2003) Natural realgar and amorphous AsS oxidation kinetics. Geochim Cosmochim Acta 67:859–871

    Google Scholar 

  • Lengke MF, Sanpawanitchakit C, Tempel RN (2009) The oxidation and dissolution of arsenic-bearing sulfides. Can Mineral 47:593–613

    Google Scholar 

  • Li J, Xie ZM, Xu JM, Sun YF (2006) Risk assessment for safety of soils and vegetables around a lead/zinc mine. Environ Geochem Health 28:37–44

    Google Scholar 

  • Li J, Smart RSC, Schumann RC, Gerson AR, Levay G (2007a) A simplified method for estimation of jarosite and acid-forming sulfates in acid mine wastes. Sci Total Environ 373:391–403

    Google Scholar 

  • Li MG, St-Arnoud L (1997) Hydrogeochemistry of secondary mineral dissolution: column leaching experiment using oxidized waste rock. In: Proceedings of the 4th international conference on acid rock drainage, vol 1. Vancouver, pp 465–477

    Google Scholar 

  • Liao B, Huang LN, Ye ZH, Lan CY, Shu WS (2007) Cut-off net acid generation pH in predicting acid-forming potential in mine spoils. J Environ Qual 36:887–891

    Google Scholar 

  • Lim HS, Lee JS, Chon HT, Sager M (2008) Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. J Geochem Explor 96:223–230

    Google Scholar 

  • Lin Z (1997) Mineralogical and chemical characterization of wastes from the sulfuric acid industry in Falun, Sweden. Environ Geol 30:152–162

    Google Scholar 

  • Lin Z, Herbert RB Jr (1997) Heavy metal retention in secondary precipitates from a mine rock dump and underlying soil, Dalarna, Sweden. Environ Geol 33:1–12

    Google Scholar 

  • Linklater CM, Sinclair DJ, Brown PL (2005) Coupled chemistry and transport modeling of sulphidic waste rock dumps at the Aitik mine site, Sweden. Appl Geochem 20:275–293

    Google Scholar 

  • Liu J, Aruguete DM, Jinschek JR, Rimstidt JD, Hochella MF Jr (2008a) The non-oxidative dissolution of galena nanocrystals: insights into mineral dissolution rates as a function of grain size, shape, and aggregation state. Geochim Cosmochim Acta 72:5984–5996

    Google Scholar 

  • Liu Q, Li H, Zhou L (2008b) Galvanic interactions between metal sulfide minerals in a flowing system: implications for mines environmental restoration. Appl Geochem 23:2316–2323

    Google Scholar 

  • Liu R, Wolfe AL, Dzombak DA, Horwitz CP, Stewart BW, Capo RC (2008c) Electrochemical study of hydrothermal and sedimentary pyrite dissolution. Appl Geochem 23:2724–2734

    Google Scholar 

  • Liu R, Wolfe AL, Dzombak DA, Stewart BW, Capo RC (2008d) Comparison of dissolution under oxic acid drainage conditions for eight sedimentary and hydrothermal pyrite samples. Environ Geol 56:171–182

    Google Scholar 

  • Loredo J, Ordonez A, Gallego JR, Baldo C, Garcia-Iglesias J (1999) Geochemical characterisation of mercury mining spoil heaps in the area of Mieres (Asturias, northern Spain). J Geochem Explor 67:377–390

    Google Scholar 

  • Loredo J, Álvarez R, Ordóñez A, Bros T (2008) Mineralogy and geochemistry of the Texeo Cu-CO mine site (NW Spain): screening tools for environmental assessment. Environ Geol 55:1299–1310

    Google Scholar 

  • Lottermoser BG (2002) Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia. Mineral Mag 66:475–490

    Google Scholar 

  • Lottermoser BG (2005) Evaporative mineral precipitates from a historical smelting slag dump, Río Tinto, Spain. Neues Jb Miner Abh 181:183–190

    Google Scholar 

  • Lottermoser BG, Ashley PM (2006a) Mobility and retention of trace elements in hardpan-cemented cassiterite tailings, north Queensland, Australia. Environ Geol 50:835–846

    Google Scholar 

  • Lottermoser BG, Ashley PM, Lawie DC (1999) Environmental geochemistry of the Gulf Creek copper mine area, northeastern New South Wales, Australia. Environ Geol 39:61–74

    Google Scholar 

  • Lottermoser BG, Ashley PM, Munksgaard NC (2008) Biogeochemistry of Pb-Zn gossans, northwest Queensland, Australia: implications for mineral exploration and mine site rehabilitation. Appl Geochem 23:723–742

    Google Scholar 

  • Lu L, Wang R, Chen F, Xue J, Zhang P, Lu J (2005) Element mobility during pyrite weathering; implications for acid and heavy metal pollution at mining-impacted sites. Environ Geol 49:82–89

    Google Scholar 

  • Lundgren T (2001) The dynamics of oxygen transport into soil covered mining waste deposits in Sweden. J Geochem Explor 74:163–173

    Google Scholar 

  • Luther GW (1987) Pyrite oxidation and reduction; molecular orbital theory considerations. Geochim Cosmochim Acta 51:3193–3199

    Google Scholar 

  • Malmström ME, Gleisner M, Herbert RB (2006) Element discharge from pyritic mine tailings at limited oxygen availability in column experiments. Appl Geochem 21:184–202

    Google Scholar 

  • Marescotti P, Carbone C, De Capitani L, Grieco G, Lucchetti G, Servida D (2008) Mineralogical and geochemical characterization of open-air tailing and waste-rock dumps from the Libiola Fe-Cu sulphide mine (Eastern Liguria, Italy). Environ Geol 53:1613–1626

    Google Scholar 

  • Martínez-Ruiz C, Fernández-Santos B, Putwain PD, Fernández-Gómez MJ (2007) Natural and man-induced revegetation on mining wastes: changes in the floristic composition during early succession. Ecol Eng 30:286–294

    Google Scholar 

  • Martínez López J, Llamas Borrajo J, de Miguel García E, Rey Arrans J, Hidalgo Estévez MC, Sáez Castillo AJ (2008) Multivariate analysis of contamination in the mining district of Linares (Jaén, Spain). Appl Geochem 23:2324–2336

    Google Scholar 

  • Masalehdani MNN, Mees F, Dubois M, Coquinot Y, Potdevin JL, Fialin M, Blanc-Valleron MM (2009) Condensate minerals from a burning coal-waste heap in Avion, Northern France. Can Mineral 47:573–591

    Google Scholar 

  • Mathews WH, Bustin RM (1984) Why do the Smoking Hills smoke? Can J Earth Sci 21:737–742

    Google Scholar 

  • Matlock MM, Howerton BS, Atwood DA (2003) Covalent coating of coal refuse to inhibit leaching. Adv Environ Res 7:495–501

    Google Scholar 

  • McKibben MA, Tallant BA, del Angel JK (2008) Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions. Appl Geochem 23:121–135

    Google Scholar 

  • McSweeney K, Madison FW (1988) Formation of a cemented subsurface horizon in sulfidic minewaste. J Environ Qual 17:256–262

    Google Scholar 

  • Miller JR, Lechler PJ, Mackin G, Germanoski D, Villarroel LF (2007) Evaluation of particle dispersal from mining and milling operations using lead isotopic fingerprinting techniques, Rio Pilcomayo Basin, Bolivia. Sci Total Environ 384:355–373

    Google Scholar 

  • Miller SD (1995) Geochemical indicators of sulfide oxidation and acid generation in the field. In: Grundon NJ, Bell LC (eds) Proceedings of the 2nd Australian acid mine drainage workshop. Australian Centre for Minesite Rehabilitation Research, Brisbane, pp 117–120

    Google Scholar 

  • Miller SD (1996) Advances in acid drainage: prediction and implications for risk management. In: Proceedings of 3rd international and 21st annual Minerals Council of Australia environmental workshop, vol 1. Minerals Council of Australia, Dickson, pp 149–157

    Google Scholar 

  • Miller SD (1998b) Theory, design and operation of covers for controlling sulfide oxidation in waste rock dumps. In: McLean RW, Bell LC (eds) Proceedings of the 3rd Australian acid mine drainage workshop. Australian Centre for Minesite Rehabilitation Research, Brisbane, pp 115–126

    Google Scholar 

  • Mitchell P (2000) Prediction, prevention, control and treatment of acid rock drainage. In: Warhurst A, Noronha L (eds) Environmental policy in mining; corporate strategy and planning for closure. Lewis Publishers, Boca Raton, pp 117–143

    Google Scholar 

  • Mlayah A, Ferreira da Silva E, Rocha F, Ben Hamza C, Charef A, Noronha F (2009) The Oued Mellègue: mining activity, stream sediments and dispersion of base metals in natural environments, North-western Tunisia. J Geochem Explor 102:27–36

    Google Scholar 

  • Modis K, Komnitsas K (2007) Optimum sampling density for the prediction of acid mine drainage in an underground sulphide mine. Mine Water Environ 26:237–242

    Google Scholar 

  • Molina JA, Oyarzun R, Esbrí JM, Higueras P (2006) Mercury accumulation in soils and plants in the Almadén mining district, Spain: one of the most contaminated sites on Earth. Environ Geochem Health 28:487–498

    Google Scholar 

  • Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659

    Google Scholar 

  • Moncur MC, Jambor JL, Ptacek CJ, Blowes DW (2009) Mine drainage from the weathering of sulfide minerals and magnetite. Appl Geochem 24:2362–2373

    Google Scholar 

  • Morin KA, Hutt NM (1997) Environmental geochemistry of minesite drainage. MDAG Publication, Vancouver

    Google Scholar 

  • Morrison AL, Gulson BL (2007) Preliminary findings of chemistry and bioaccessibility in base metal smelter slags. Sci Total Environ 382:30–42

    Google Scholar 

  • Müller N, Franke K, Schreck P, Hirsch D (2008) Georadiochemical evidence to weathering of mining residues of the Mansfeld mining district, Germany. Environ Geol 54:869–877

    Google Scholar 

  • Munk LA, Faure G, Koski R (2006) Geochemical evolution of solutions derived from experimental weathering of sulfide-bearing rocks. Appl Geochem 21:1123–1134

    Google Scholar 

  • Munroe EA, McLemore VT, Kyle P (1999) Waste rock pile characterization, heterogeneity, and geochemical anomalies in the Hillsboro Mining District, Sierra County, New Mexico. J Geochem Explor 67:391–405

    Google Scholar 

  • Murad E, Schwertmann U, Bigham JM, Carlson L (1994) Mineralogical characteristics of poorly crystallized precipitates formed by oxidation of Fe2+ in acid sulfate waters. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society Symposium Series 550, Washington, DC, pp 190–200

    Google Scholar 

  • Natarajan KA, Subramanian S, Braun JJ (2006) Environmental impact of metal mining – biotechnological aspects of water pollution and remediation – an Indian experience. J Geochem Explor 88:45–48

    Google Scholar 

  • Navarro A, Cardellach E, Mendoza JL, Corbella M, Domènech LM (2008a) Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain). Appl Geochem 23:895–913

    Google Scholar 

  • Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008b) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193

    Google Scholar 

  • Ngoc KC, Nguyen NV, Dinh BN, Thanh SL, Tanaka S, Kang Y, Sakurai K, Iwasaki K (2009) Arsenic and heavy metal concentrations in agricultural soils around tin and tungsten mines in the Dai Tu district, N Vietnam. Water Air Soil Poll 197:75–89

    Google Scholar 

  • Nicholson RV, Scharer JM (1994) Laboratory studies of pyrrhotite oxidation kinetics. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society Symposium Series 550, Washington, DC, pp 14–30

    Google Scholar 

  • Nicholson RV, Gillham RW, Reardon EJ (1990) Pyrite oxidation in carbonate-buffered solution; 2. Rate control by oxide coatings. Geochim Cosmochim Acta 54:395–402

    Google Scholar 

  • Nordstrom DK, Alpers CN (1999a) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MS (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues, vol 6A. Society of Economic Geologists, Littleton, pp 133–160 (Reviews in economic geology)

    Google Scholar 

  • Nugraha C, Shimada H, Sasaoka T, Ichinose M, Matsui K, Manege I (2009) Geochemistry of waste rock at dumping area. Int J Min Reclam Environ 23:132–143

    Google Scholar 

  • Oerter EJ, Brimhall GH Jr, Redmond J, Walker B (2007) A method for quantitative pyrite abundance in mine rock piles by powder X-ray diffraction and Rietveld refinement. Appl Geochem 22:2907–2925

    Google Scholar 

  • Ollier CD, Pain CF (1997) Regolith, soils and landforms. Wiley, New York

    Google Scholar 

  • Ostergren JD, Brown GE, Parks GA, Tingle TN (1999) Quantitative speciation of lead in selected mine tailings from Leadville, CO. Environ Sci Technol 33:1627–1636

    Google Scholar 

  • Oyarzun R, Cubas P, Higueras P, Lillo J, Llanos W (2009) Environmental assessment of the arsenic-rich, Rodalquilar gold–(copper-lead-zinc) mining district, SE Spain: data from soils and vegetation. Environ Geol 58:761–777

    Google Scholar 

  • Pagnanelli F, Luigi M, Mainelli S, Toro L (2007) Use of natural materials for the inhibition of iron oxidizing bacteria involved in the generation of acid mine drainage. Hydrometallurgy 87:27–35

    Google Scholar 

  • Paktunc AD (1999) Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ Geol 39:103–112

    Google Scholar 

  • Parker G (1999) A critical review of acid generation resulting from sulfide oxidation: processes, treatment and control. In: Acid Drainage. Australian Minerals & Energy Environment Foundation, Melbourne, occasional paper no 11, pp 1–182

    Google Scholar 

  • Parsons MB, Bird DK, Einaudi MT, Alpers CN (2001) Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California. Appl Geochem 16:1567–1593

    Google Scholar 

  • Pedersen TF, McNee JJ, Flather DH, Mueller B, Pelletier CA (1998) Geochemical behaviour of submerged pyrite-rich tailings in Canadian lakes. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes. Springer, Heidelberg, pp 87–125

    Google Scholar 

  • Peng B, Piestrzynski A, Pieczonka J, Xiao M, Wang Y, Xie S, Tang X, Yu C, Song Z (2007) Mineralogical and geochemical constraints on environmental impacts from waste rock at Taojiang Mn-ore deposit, central Hunan, China. Environ Geol 52:1277–1296

    Google Scholar 

  • Pérez-López R, Nieto JM, Álvarez-Valero AM, Ruiz de Almodóvar G (2007a) Mineralogy of the hardpan formation processes in the interface between sulfide-rich sludge and fly ash: applications for acid mine drainage mitigation. Amer Mineral 92:1966–1977

    Google Scholar 

  • Pérez-López R, Álvarez-Valero AM, Nieto JM, Sáez R, Matos JX (2008) Use of sequential extraction procedure for assessing the environmental impact at regional scale of the Sao Domingos Mine (Iberian Pyrite Belt). Appl Geochem 23:3452–3463

    Google Scholar 

  • Petrunic BM, Al TA, Weaver L, Hall D (2009) Identification and characterization of secondary minerals formed in tungsten mine tailings using transmission electron microscopy. Appl Geochem 24:2222–2233

    Google Scholar 

  • Piatak NM, Seal RR, Hammarstrom JM (2004) Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites. Appl Geochem 19:1039–1064

    Google Scholar 

  • Pirrie D, Camm GS, Sear LG, Hughes SH (1997) Mineralogical and geochemical signature of mine waste contamination, Tresillian River, Fal Estuary, Cornwall, UK. Environ Geol 29:58–65

    Google Scholar 

  • Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS, Logsdon MS (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues, vol 6A. Society of Economic Geologists, Littleton, pp 71–116 (Reviews in economic geology)

    Google Scholar 

  • Pond AP, White SA, Milczarek M, Thompson TL (2005) Accelerated weathering of biosolid-amended copper mine tailings. J Environ Qual 34:1293–1301

    Google Scholar 

  • Price WA, Morin K, Hutt N (1997) Guidelines for the prediction of acid rock drainage Part II. Recommended procedures for static and kinetic testing. In: Proceedings from the 4th international conference on acid rock drainage, vol 1. Vancouver, pp 15–30

    Google Scholar 

  • Ptacek CJ, Blowes DW (1994) Influence of siderite on the pore-water chemistry of inactive mine-tailings impoundments. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society Symposium Series 550, Washington, DC, pp 172–189

    Google Scholar 

  • Puura E, Neretnieks I (2000) Atmospheric oxidation of the pyritic waste rock in Maardu, Estonia. 2. An assessment of aluminosilicate buffering potential. Environ Geol 39:560–566

    Google Scholar 

  • Puura E, Neretnieks I, Kirsimäe K (1999) Atmospheric oxidation of the pyritic waste rock in Maardu, Estonia. 1. Field study and modelling. Environ Geol 39:1–19

    Google Scholar 

  • Puziewicz J, Zainoun K, Bril H (2007) Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Swiętochłowice, Upper Silesia, Poland. Can Mineral 45:1189–1200

    Google Scholar 

  • Qi C, Liu G, Chou CL, Zheng L (2008) Environmental geochemistry of antimony in Chinese coals. Sci Total Environ 389:225–234

    Google Scholar 

  • Rapant S, Dietzová Z, Cicmanová S (2006) Environmental and health risk assessment in abandoned mining area, Zlata Idka, Slovakia. Environ Geol 51:387–397

    Google Scholar 

  • Reglero MM, Monsalve-González L, Taggart MA, Mateo R (2008) Transfer of metals to plants and red deer in an old lead mining area in Spain. Sci Total Environ 406:287–297

    Google Scholar 

  • Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880

    Google Scholar 

  • Rimstidt JD, Chermak JA, Gagen PM (1994) Rates of reaction of galena, sphalerite, chalcopyrite and arsenopyrite with Fe(III) in acidic solutions. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society Symposium Series 550, Washington, DC, pp 2–13

    Google Scholar 

  • Ritchie AIM (1994a) The waste-rock environment. In: Jambor JL, Blowes DW (eds) Environmental geochemistry of sulfide mine-wastes, vol 22. Mineralogical Association of Canada, Nepean, pp 133–161 (Short course handbook)

    Google Scholar 

  • Ritchie AIM (1994b) Sulfide oxidation mechanisms; controls and rates of oxygen transport. In: Jambor JL, Blowes DW (eds) Environmental geochemistry of sulfide mine-wastes, vol 22. Mineralogical Association of Canada, Nepean, pp 201–245 (Short course handbook)

    Google Scholar 

  • Ritchie AIM (1995) Application of oxidation rates in rehabilitation design. In: Grundon NJ, Bell LC (eds) Proceedings of the 2nd Australian acid mine drainage workshop. Australian Centre for Minesite Rehabilitation Research, Brisbane, pp 101–116

    Google Scholar 

  • Romano P, Blazquez ML, Alguacil FJ, Munoz JA, Ballester A, Gonzalez F (2001) Comparitive study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria. FEMS Microbiol Lett 196:71–75

    Google Scholar 

  • Rosado, L, Morais C, Candeias AE, Pinto AP, Guimarães F, Mirão J (2008) Weathering of S. Domingos (Iberian Pyritic Belt) abandoned mine slags. Mineral Mag 72:489–494

    Google Scholar 

  • Rozalén ML, Huertas FJ, Brady PV, Cama J, García-Palma S, Linares J (2008) Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25˚C. Geochim Cosmochim Acta 72:4224–4253

    Google Scholar 

  • Ruby MV, Davis A, Nicholson A (1994) In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol 28:646–654

    Google Scholar 

  • Rufo L, Rodríguez N, Amils R, de la Fuente V, Jiménez-Ballesta R (2007) Surface geochemistry of soils associated to the Tinto River (Huelva, Spain). Sci Total Environ 378:223–227

    Google Scholar 

  • Salkield LU (1987) A technical history of the Rio Tinto mines: some notes on exploitation from pre-Phoenician times to the 1950 s. The Institution of Mining and Metallurgy, London

    Google Scholar 

  • Salmon SU, Malmström ME (2006) Quantification of mineral dissolution rates and applicability of rate laws: laboratory studies of mill tailings. Appl Geochem 21:269–288

    Google Scholar 

  • Salomons W (1995) Environmental impact of metals derived from mining activities; processes, predictions, prevention. J Geochem Explor 52:5–23

    Google Scholar 

  • Sams JI, Veloski GA (2003) Evaluation of airborne thermal infrared imagery for locating mine drainage sites in the Lower Kettle Creek and Cook Run Basins, Pennsylvania, USA. Mine Water Environ 22:85–93

    Google Scholar 

  • Sams JI, Veloski GA, Ackman TE (2003) Evaluation of airborne thermal infrared imagery for locating mine drainage sites in the lower Youghiogheny River Basin, Pennsylvania, USA. Mine Water Environ 22:94–103

    Google Scholar 

  • Sánchez España JS, Pamo EL, Pastor ES (2007) The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel Basin, Huelva, Spain): field and laboratory rates. J Geochem Explor 92:120–132

    Google Scholar 

  • Sánchez España JS, Toril EG, López Pamo E, Amils R, Ercilla MD, Pastor ES, Martin-Úriz PS (2008a) Biogeochemistry of a hyperacidic and ultraconcentrated pyrite leachate in San Telmo mine (Iberian Pyrite Belt, Spain). Water Air Soil Poll 194:243–257

    Google Scholar 

  • Sand W, Jozsa PG, Kovacs ZM, Săsăran N, Schippers A (2007) Long-term evaluation of acid rock drainage mitigation measures in large lysimeters. J Geochem Explor 92:2005–211

    Google Scholar 

  • Sato M (1992) Persistency-field Eh-pH diagrams for sulfides and their application to supergene oxidation and enrichment of sulfide ore bodies. Geochim Cosmochim Acta 56:3133–3156

    Google Scholar 

  • Schaaf W, Hüttl RF (2006) Direct and indirect effects of soil pollution by lignite mining. Water Air Soil Poll: Foc 6:353–364

    Google Scholar 

  • Schaider LA, Senn DB, Brabander DJ, McCarthy KD, Shine JP (2007) Characterization of zinc, lead, and cadmium in mine waste: implications for transport, exposure, and bioavailability. Environ Sci Technol 41:4164–4171

    Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    Google Scholar 

  • Schippers A, Kock D, Schwartz M, Bottcher ME, Vogel H, Hagger M (2007) Geomicrobiological and geochemical investigation of a pyrrhotite-containing mine waste tailings dam near Selebi-Phikwe in Botswana. J Geochem Explor 92:151–158

    Google Scholar 

  • Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522

    Google Scholar 

  • Schubert M, Osenbrück K, Knöller K (2008) Using stable and radioactive isotopes for the investigation of contaminant metal mobilization in a metal mining district. Appl Geochem 23:2945–2954

    Google Scholar 

  • Schuwirth N, Voegelin A, Kretzschmar R, Hofmann T (2007) Vertical distribution and speciation of trace metals in weathering flotation residues of a zinc/lead sulfide mine. J Environ Qual 36:61–99

    Google Scholar 

  • Seignez N, Gauthier A, Bulteel D, Damidot D, Potdevin JL (2008) Leaching of lead metallurgical slags and pollutant mobility far from equilibrium conditions. Appl Geochem 23:3699–3711

    Google Scholar 

  • Shaw SA, Hendry MJ (2009) Geochemical and mineralogical impacts of H2SO4 on clays between pH 5.0 and -3.0. Appl Geochem 24:333–345

    Google Scholar 

  • Shay DA, Cellan RR (2000) Use of a chemical cap to remediate acid rock conditions at Homestake’s Santa Fe mine. In: Tailings and mine waste ’00. Balkema, Rotterdam, pp 203–210

    Google Scholar 

  • Sherlock EJ, Lawrence RW, Poulin R (1995) On the neutralization of acid rock drainage by carbonate and silicate minerals. Environ Geol 25:43–54

    Google Scholar 

  • Shevade AV, Erickson L, Pierzynski G, Jiang S (2001) Formation and stability of substituted pyromorphite: a molecular modeling study. J Hazard Subst Res 3:2–1 to 2–12

    Google Scholar 

  • Shipitalo MJ, Bonta JV (2008) Impact of using paper mill sludge for surface-mine reclamation on runoff water quality and plant growth. J Environ Qual 37:2351–2359

    Google Scholar 

  • Sidenko NV, Gieré R, Bortnikova SB, Cottard F, Pal’chik NA (2001) Mobility of heavy metals in self-burning waste heaps of the zinc smelting plant in Belovo (Kemerovo Region, Russia). J Geochem Explor 74:109–125

    Google Scholar 

  • Sidenko NV, Khozhina EI, Sherriff BL (2007) The cycling of Ni, Zn, Cu in the system “mine tailings – ground water – plants”: a case study. Appl Geochem 22:30–52

    Google Scholar 

  • Singer PC, Stumm W (1970) Acid mine drainage: rate-determining step. Science 167:1121–1123

    Google Scholar 

  • Skousen J, Renton J, Brown H, Evans P, Leavitt B, Brady K, Cohen L, Ziemkiewicz P (1997) Neutralization potential of overburden samples containing siderite. J Environ Qual 26:673–681

    Google Scholar 

  • Skousen J, Simmons J, McDonald LM, Ziemkiewicz P (2002) Acid-base accounting to predict post-mining drainage quality on surface mines. J Environ Qual 31:2034–2044

    Google Scholar 

  • Slowey AJ, Johnson SB, Newville M, Brown GE Jr (2007) Speciation and colloid transport of arsenic from mine tailings. Appl Geochem 22:1884–1898

    Google Scholar 

  • Smart R, Skinner B, Levay G, Gerson A, Thomas J, Sobieraj H, Schumann R, Weisener C, Weber P, Miller S, Stewart W (2002) ARD testbook. Project P387A prediction and kinetic control of acid mine drainage. AMIRA International, Melbourne

    Google Scholar 

  • Smith A, Robertson A, Barton-Bridges J, Hutchison IPG (1992) Prediction of acid generation potential. In: Hutchison IPG, Ellison RD (eds) Mine waste management. Lewis Publishers, Boca Raton, pp 123–199

    Google Scholar 

  • Smith AML, Hudson-Edwards KA, Dubbin WE, Wright K (2006) Dissolution of jarosite [KFe3(SO4)2(OH)2] at pH 2 and 8; insights from batch experiments and computational modelling. Geochim Cosmochim Acta 70:608–621

    Google Scholar 

  • Smith KS, Ramsey CA, Hageman PL (2000) Sampling strategy for the rapid screening of mine-waste dumps on abandoned mine lands. In: Proceedings from the 5th international conference on acid rock drainage, vol 2. Society for Mining, Metallurgy, and Exploration, Littleton, pp 1453–1461

    Google Scholar 

  • Smith MW, Brady KBC (1998) Alkaline addition. In: Coal mine drainage prediction and pollution prevention in Pennsylvania. The Pennsylvania Department of Environmental Protection, Chapter 13, 13–1 to 13–13

    Google Scholar 

  • Smuda J, Dold B, Friese K, Morgenstern P, Glaesser W (2007) Mineralogical and geochemical study of element mobility at the sulphide-rich Excelsior waste rock dump from the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit, Cerro de Pasco, Peru. J Geochem Explor 92:97–110

    Google Scholar 

  • Sneddon IR, Orueetxebarria M, Hodson ME, Schofield PF, Valsami-Jones E (2008) Field trial using bone meal amendments to remediate mine waste derived soil contaminated with zinc, lead and cadmium. Appl Geochem 23:2414–2424

    Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and minesoils. US EPA 600/2-78-054, Washington, DC

    Google Scholar 

  • Spuller C, Weigand H, Marb C (2007) Trace metal stabilisation in a shooting range soil: mobility and phytotoxicity. J Hazard Mat 141:378–387

    Google Scholar 

  • Sracek O, Gélinas P, Lefebvre R, Nicholson RV (2006) Comparison of methods for the estimation of pyrite oxidation rate in a waste rock pile at Mine Doyon site, Quebec, Canada. J Geochem Explor 91:99–109

    Google Scholar 

  • Stanton MR, Gemery-Hill PA, Shanks WC III, Taylor CD (2008) Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0-4.0. Appl Geochem 23:136–147

    Google Scholar 

  • Strömberg B, Banwart SA (1999) Experimental study of acidity-consuming processes in mine waste rock; some influences of mineralogy and particle size. Appl Geochem 14:1–16

    Google Scholar 

  • Stumm W, Morgan JJ (1995) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Svendson A, Henry C, Brown S (2007) Revegetation of high zinc and lead tailings with municipal biosolids and lime: greenhouse study. J Environ Qual 36:1609–1617

    Google Scholar 

  • Sverdrup HU (1990) The kinetics of base cation release due to chemical weathering. Lund University Press, Lund

    Google Scholar 

  • Swayze GA, Smith KS, Clark RN, Sutley SJ, Pearson RM, Vance JS, Hageman PL, Briggs PH, Meier AL, Singleton MJ, Roth S (2000) Using imaging spectroscopy to map acidic mine waste. Environ Sci Technol 34:47–54

    Google Scholar 

  • Taylor JR, Waring CL, Murphy NC, Leake MJ (1998) An overview of acid mine drainage control and treatment options, including recent advances. In: McLean RW, Bell LC (eds) Proceedings of the 3rd Australian acid mine drainage workshop. Australian Centre for Minesite Rehabilitation Research, Brisbane, pp 147–159

    Google Scholar 

  • Teršič T, Gosar M, šajn R (2009) Impact of mining activities on soils and sediments at the historical mining area in Podljubelj, NW Slovenia. J Geochem Explor 100:1–10

    Google Scholar 

  • Trois C, Marcello A, Pretti S, Trois P, Rossi G (2007) The environment risk posed by small dumps of complex arsenic, antimony, nickel and cobalt sulphides. J Geochem Explor 92:83–95

    Google Scholar 

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge Earth Science Series, Cambridge University Press, Cambridge

    Google Scholar 

  • Velasco F, Alvaro A, Suarez S, Herrero JM, Yusta I (2005) Mapping Fe-bearing hydrated sulphate minerals with short wave infrared (SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain). J Geochem Explor 87:45–72

    Google Scholar 

  • Velleux ML, Julien PY, Rojas-Sanchez R, Clements WH, England JF Jr (2006) Simulation of metals transport and toxicity at a mine-impacted watershed: California Gulch, Colorado. Environ Sci Technol 40:6996–7004

    Google Scholar 

  • Walker FP, Schreiber ME, Rimstidt JD (2006) Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochim Cosmochim Acta 70:1668–1676

    Google Scholar 

  • Weber PA, Stewart WA, Skinner WM, Weisener CG, Thomas JE, Smart RSC (2004) Geochemical effects of oxidation products and framboidal pyrite oxidation in acid mine drainage prediction techniques. Appl Geochem 19:1953–1974

    Google Scholar 

  • White WW, Lapakko KA, Cox RL (1999) Static-test methods most commonly used to predict acid-mine drainage: practical guidelines and interpretation. In: Plumlee GS, Logsdon MS (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues, vol 6A. Society of Economic Geologists, Littleton, pp 325–338 (Reviews in economic geology)

    Google Scholar 

  • Williams DJ (1997) Effectiveness of co-disposing coal washery wastes. In: Tailings and mine waste ’97. Balkema, Rotterdam, pp 335–341

    Google Scholar 

  • Williams DJ, Wilson GW, Currey NA (1997) A cover system for a potentially acid forming waste rock dump in a dry climate. In: Tailings and mine waste ’97. Balkema, Rotterdam, pp 231–236

    Google Scholar 

  • Williams DJ, Bigham JM, Cravotta CA, Traina SJ, Anderson JE, Lyon JG (2002) Assessing mine drainage pH from the colour and spectral reflectance of chemical precipitates. Appl Geochem 17:1273–1286

    Google Scholar 

  • Williams PA (1990) Oxide zone geochemistry. Ellis Horwood, New York

    Google Scholar 

  • Wilson GW, Newman LL, Ferguson KD (2000) The co-disposal of waste rock and tailings. In: Proceedings from the 5th international conference on acid rock drainage, vol 2. Society for Mining, Metallurgy, and Exploration, Littleton, pp 789–796

    Google Scholar 

  • Xenidis A, Mylona E, Paspaliaris I (2002) Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Manage 22:631–641

    Google Scholar 

  • Xu Y, Schwartz FW (1994) Lead immobilization by hydroxyapatite in aqueous solutions. J Contam Hydrol 15:187–206

    Google Scholar 

  • Yang J (2006) Concentrations and modes of occurrence of trace elements in the Late Permian coals from the Puan Coalfield, southwestern Guizhou, China. Environ Geochem Health 28:567–576

    Google Scholar 

  • Yang JE, Skousen JG, Ok YS, Yoo KY, Kim HJ (2006) Reclamation of abandoned coal mine waste in Korea using lime cake by-products. Mine Water Environ 25:227–232

    Google Scholar 

  • Yin G, Catalan LJJ (2003) Use of alkaline extraction to quantify sulfate concentration in oxidized mine tailings. J Environ Qual 32:2410–2413

    Google Scholar 

  • You LQ, Heping L, Li Z (2007) Study of galvanic interactions between pyrite and chalcopyrite in a flowing system: implications for the environment. Environ Geol 52:11–18

    Google Scholar 

  • Younger PL (2004) Environmental impacts of coal mining and associated wastes: a geochemical perspective. In: Gieré R, Stille P (eds) Energy, waste, and the environment: a geochemical perspective, vol 236. Geological Society, London, Special Publications, pp 169–209

    Google Scholar 

  • Younger PL, Banwart SA, Hedin RS (2002) Mine water; hydrology, pollution, remediation. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yunmei Y, Yongxuan Z, Williams-Jones AE, Zhenmin G, Dexian L (2004) A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment. Appl Geochem 19:435–444

    Google Scholar 

  • Zheng G, Kuno A, Mahdi TA, Evans DJ, Miyahara M, Takahashi Y, Matsuo M, Shimizu H (2007) Iron speciation and mineral characterization of contaminated sediments by coal mine drainage in Neath Canal, South Wales, United Kingdom. Geochem J 41:463–474

    Google Scholar 

  • Zielinski RA, Otton JK, Johnson CA (2001) Sources of salinity near a coal mine spoil pile, north-central Colorado. J Environ Qual 30:1237–1248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd G. Lottermoser PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lottermoser, B.G. (2010). Sulfidic Mine Wastes. In: Mine Wastes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12419-8_2

Download citation

Publish with us

Policies and ethics