Skip to main content

Male-Killing Wolbachia in the Butterfly Hypolimnas bolina

  • Chapter
  • First Online:
  • 1454 Accesses

Abstract

Maternally inherited insect symbionts often manipulate host reproduction for their own benefit. Symbionts are transmitted to the next host generation through the female hosts, and as such males represent dead ends for transmission. Natural selection therefore favors symbiont-induced phenotypes that provide a reproductive advantage to infected females, regardless of possible negative selective effects on males. Male-killing (MK) is one such phenotype, in which symbionts kill the male progeny of infected females. Compared with other symbiont-associated reproductive phenotypes, MK is relatively unexplored mechanistically as well as ecologically. A male-killing Wolbachia bacterium strain named wBol1 has been described in the tropical butterfly Hypolimnas bolina. By reviewing the different features of this association it is possible to summarize what is already known about the biology and evolution of MK symbionts, as well as highlight the current gaps in our understanding of this striking reproductive phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus sequence typing for Wolbachia. Appl Environ Microbiol 72(11):7098–7110

    Article  PubMed  CAS  Google Scholar 

  • Bandi C, Damiani G, Magrassi L, Grigolo A, Fani R, Sacchi L (1994) Flavobacteria as intracellular symbionts in cockroaches. Proc Biol Sci 257:43–48

    Article  PubMed  CAS  Google Scholar 

  • Bandi C, Anderson TJC, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265:2407–2413

    Article  PubMed  CAS  Google Scholar 

  • Beckage NE, Tan FF, Schleifer KW, Lane RD, Cherubin LL (1994) Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta. Arch Insect Biochem Physiol 26:165–195

    Article  CAS  Google Scholar 

  • Bourtzis K, Miller TA (eds) (2003) Insect symbiosis. CRC Press, New York, NY

    Google Scholar 

  • Bourtzis K, Miller TA (eds) (2006) Insect symbiosis, vol 2. CRC Press, New York, NY

    Google Scholar 

  • Braig HR, Guzman H, Tesh RB, O’Neill SL (1994) Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 367:453–455

    Article  PubMed  CAS  Google Scholar 

  • Brelsfoard CL, StClair W, Dobson SL (2009) Integration of irradiation with cytoplasmic incompatibility to facilitate a lymphatic filariasis vector elimination approach. Parasit Vectors 2:38

    Article  PubMed  CAS  Google Scholar 

  • Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill CL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:6

    Article  CAS  Google Scholar 

  • Caturegli P, Asanovich KM, Walls JJ, Bakken JS, Madigan JE, Popov VL, Dumler JS (2000) ankA: an Ehrlichia phagocytophila group gene encoding a cytoplasmic protein antigen with ankyrin repeats. Infect Immun 68(9):5277–5283

    Article  PubMed  CAS  Google Scholar 

  • Charlat S, Hornett EA, Dyson EA, Ho PPY, Thi-Loc N, Schilthuizen M, Davies N, Roderick GK, Hurst GDD (2005) Prevalence and penetrance variation of male-killing Wolbachia across Indo-Pacific populations of the butterfly Hypolimnas bolina. Mol Ecol 14:3525–3530

    Article  PubMed  CAS  Google Scholar 

  • Charlat S, Engelstadter J, Dyson E, Hornett E, Duplouy A, Tortosa P, Davies N, Roderick G, Wedell N, Hurst G (2006) Competing selfish genetic elements in the butterfly Hypolimnas bolina. Curr Biol 16:2453–2458

    Article  PubMed  CAS  Google Scholar 

  • Charlat S, Hornett EA, Fullard JH, Davies N, Roderick GK, Wedell N, Hurst GDD (2007a) Extraordinary flux in sex ratio. Science 317:214

    Article  PubMed  CAS  Google Scholar 

  • Charlat S, Reuter M, Dyson EA, Hornett EA, Duplouy A, Davies N, Roderick GK, Wedell N, Hurst GDD (2007b) Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr Biol 17:273–277

    Article  PubMed  CAS  Google Scholar 

  • Charlat S, Davies N, Roderick GK, Hurst GDD (2007c) Disrupting the timing of Wolbachia-induced male-killing. Biol Lett 3:154–156

    Article  PubMed  Google Scholar 

  • Charlat S, Duplouy A, Hornett EA, Dyson EA, Davies N, Roderick GK, Wedell N, Hurst GDD (2009) The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evol Biol 9:64

    Article  PubMed  CAS  Google Scholar 

  • Chen D-Q, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol Exp Appl 95:315–323

    Article  Google Scholar 

  • Christensen B (2004) Tracking of migrant blue moon butterfly, Hypolimnas bolina nerina, using web-based software. Weta 28:47–48

    Google Scholar 

  • Clarke C, Sheppard PM (1975) The genetics of the mimetic butterfly Hypolimnas bolina (L.). Philos Trans R Soc Lond B Biol Sci 272(917):229–265

    Article  PubMed  CAS  Google Scholar 

  • Clarke C, Sheppard P, Scali V (1975) All-female broods in the butterfly Hypolimnas bolina (L.). Proc Biol Sci 189:29–37

    Article  Google Scholar 

  • Clarke SC, Jonhson G, Jonson B (1983) All-female broods in Hypolimnas bolina (L.). A re-survey of West Fiji after 60 years. Biol J Linn Soc 19:221–235

    Article  Google Scholar 

  • Common IFB, Waterhouse DF (1972) Butterflies of Australia. Angus and Robertson, Sydney

    Google Scholar 

  • Cordaux R, Michel-Salzat A, Frelon-Raimond M, Rigaud T, Bouchon D (2004) Evidence for a new feminizing Wolbachia strain in the isopod Armadillidium vulgare: evolutionary implications. Heredity 93:78–84

    Article  PubMed  CAS  Google Scholar 

  • Counce SJ, Poulson DF (1962) Developmental effects of the sex-ratio agent in embryos of Drosophila willistoni. J Exp Zool 151:17–31

    Article  PubMed  CAS  Google Scholar 

  • Covacin C, Barker SC (2007) Supergroup F Wolbachia bacteria parasite lice (Insecta: Phthiraptera). Parasitol Res 100:479–485

    Article  PubMed  Google Scholar 

  • Duplouy A, Hurst GDD, O’Neill SL, Charlat S (2009) Rapid spread of male-killing Wolbachia in the butterfly Hypolimnas bolina. J Evol Biol. Doi:10.1111/j.1420-9101.2009.01891.x

    PubMed  Google Scholar 

  • Duron O, Boureux A, Echaubard P, Berthomieu A, Berticat C, Fort P, Weill M (2007) Variability and expression of ankyrin domain genes in Wolbachia infecting the mosquito Culex pipiens. J Bacteriol 189(12):4442–4448

    Article  PubMed  CAS  Google Scholar 

  • Dyson EA, Hurst GDD (2004) Persistence of an extreme sex-ratio bias in a natural population. PNAS 101(17):6520–6523

    Article  PubMed  CAS  Google Scholar 

  • Dyson E, Kamath M, Hurst G (2002) Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): evidence for horizontal transmission of a butterfly male killer. Heredity 88:166–171

    Article  PubMed  CAS  Google Scholar 

  • Engelstädter J, Telschow A, Hammerstein P (2004) Infection dynamics of different Wolbachia-types within one host population. J Theor Biol 231:345–355

    Article  PubMed  Google Scholar 

  • Engelstädter J, Telschow A, Yamamura N (2008) Coexistence of cytoplasmic incompatibility and male-killing-inducing endosymbionts, and their impact on host flow. Theor Popul Biol 73:125–133

    Article  PubMed  Google Scholar 

  • Fialho RF, Stevens L (2000) Male-killing Wolbachia in a flour beetle. Proc Biol Sci 267:1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:599–614

    Article  CAS  Google Scholar 

  • Freeland SJ, McCabe BK (1997) Fitness compensation and the evolution of selfish cytoplasmic elements. Heredity 78:391–402

    Article  Google Scholar 

  • Fry AJ, Palmer MR, Rand DM (2004) Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity 93:379–389

    Article  PubMed  CAS  Google Scholar 

  • Ghelelovitch S (1952) Sur le determinisme genetique de la sterilite dans les croisements entre differentes souches de Culex autogenicus Roubaud. C R Acad Sci III 234:2386–2388

    CAS  Google Scholar 

  • Gibbs GW (1961) New Zealand butterflies. Tuatara J Biol Soc 9:65–76

    Google Scholar 

  • Gibson CM, Hunter MS (2009) Inherited fungal and bacterial endosymbiont of a parasitic wasp and its cockroach host. Microb Ecol 57(3):542–549

    Article  PubMed  Google Scholar 

  • Haine ER (2008) Symbiont-mediated protection. Proc Biol Sci 275:353–361

    Article  PubMed  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156(774):477–488

    Article  PubMed  CAS  Google Scholar 

  • Hedges LM, Brownlies JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702

    Article  PubMed  CAS  Google Scholar 

  • Hertig M, Wolbach SB (1924) Studies on Rickettsia-like microorganisms in insects. J Med Res 44:329–374

    PubMed  CAS  Google Scholar 

  • Hochberg ME (1991) Viruses as costs to gregarious feeding behaviors in the Lepidoptera. Oikos 61(3):291–296

    Article  Google Scholar 

  • Hornett EA, Charlat S, Duplouy AMR, Davies N, Roderick GK, Wedell N, Hurst GDD (2006) Evolution of male killer suppression in natural population. PLoS Biol 4(9):e283

    Article  PubMed  CAS  Google Scholar 

  • Hornett EA, Duplouy AMR, Davies N, Roderick GK, Wedell N, Hurst GDD, Charlat S (2008) You can’t keep a good parasite down: evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. Evolution 62(5):1258–1263

    Article  PubMed  Google Scholar 

  • Hornett EA, Charlat S, Wedell N, Jiggins CD, Hurst GDD (2009) Rapidly shifting sex ratio across a species range. Curr Biol 19:1628–1631

    Article  PubMed  CAS  Google Scholar 

  • Huigens ME, Luck RF, Klaassen RHG, Maas MFPM, Timmermans MJTN, Stouthamer R (2000) Infectious parthenogenesis. Nature 405:178–179

    Article  PubMed  CAS  Google Scholar 

  • Hunter MS, Perlman SJ, Kelly SE (2003) A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsis pergandiella. Proc Biol Sci 270:2185–2190

    Article  PubMed  Google Scholar 

  • Hurst L (1991) The incidences and evolution of cytoplasmic male killers. Proc Biol Sci 244:91–99

    Article  Google Scholar 

  • Hurst GDD, Jiggins FM (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg Infect Dis 6(4):329–336

    Article  PubMed  CAS  Google Scholar 

  • Hurst GDD, Hurst LD, Majerus MEN (1997) Cytoplasmic sex ratio distorters. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers, inherited microorganisms and arthropod reproduction. Oxford University Press Inc, New York, pp 125–154

    Google Scholar 

  • Hurst GDD, van der Schulenburg JHG, Majerus TMO, Bertrand D, Zakharov IA, Baungaard J, Volkl W, Stouthamer R, Majerus MEN (1999a) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8(1):133–139

    Article  PubMed  CAS  Google Scholar 

  • Hurst GDD, Jiggins FM, van der Schulenburg JHG, Bertrand D, West SA, Goriacheva II, Zakharov IA, Werren JH, Stouthamer R, Majerus MEN (1999b) Male-killing Wolbachia in two species of insect. Proc Biol Sci 266(1420):735–740

    Article  Google Scholar 

  • Hurst GDD, Jiggins FM, Majerus MEN (2003) Inherited microorganisms that selectively kill male hosts: the hidden players of insect evolution? In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC Press, New York, NY, pp 177–197

    Chapter  Google Scholar 

  • Ikeda H (1970) The cytoplasmic-inherited ‘sex-ratio-condition’ in natural and experimental populations of Drosophila bifasciata. Genetics 65:311–333

    PubMed  CAS  Google Scholar 

  • Iturbe-Ormaetxe I, Riegler M, O’Neill SL (2005) New names for old strains?Wolbachia wSim is actually wRi. Genome Biol 6:401

    Article  PubMed  CAS  Google Scholar 

  • Jaenike J (2007) Spontaneous emergence of a new Wolbachia phenotype. Evolution 61(9):2244–2252

    Article  PubMed  Google Scholar 

  • Jiggins FM, Hurst GDD, Jiggins CD, von der Schulenburg JHG, Majerus MEN (2000) The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology 120:439–446

    Article  PubMed  Google Scholar 

  • Kageyama D, Narita S, Noda H (2008) Transfection of feminizing Wolbachia endosymbionts of the butterfly, Eurema hecabe, into the cell culture and various immature stages of the silkmoth, Bombyx mori. Microb Ecol 56(4):733–741

    Article  PubMed  Google Scholar 

  • Kemp DJ (1998) Oviposition behaviour of post-diapause Hypolimnas bolina (L.) (Lepidoptera: Nymphalidae) in tropical Australia. Aust J Zool 46:451–459

    Article  Google Scholar 

  • Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O’Neill SL, Thomson N, Sinkins SP, Parkhill J (2008) Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 25(9):1877–1887

    Article  PubMed  CAS  Google Scholar 

  • Klasson L, Westberga J, Sapountzis P, Naslund K, Lutnaes Y, Darby AC, Veneti Z, Chend L, Braig HR, Garrett R, Bourtzis K, Andersson SGE (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. PNAS 106(14):5725–5730

    Article  PubMed  CAS  Google Scholar 

  • Laven H (1959) Speciation by cytoplasmic isolation in the Culex pipiens complex. Cold Spring Harb Symp Quant Biol 24:166–175

    Article  PubMed  CAS  Google Scholar 

  • Li W, Schuler MA, Berenbaum MR (2003) Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: specificity and substrate encounter rate. PNAS 100(Suppl 2):14593–14598

    Article  PubMed  CAS  Google Scholar 

  • Lindroth RL (1989) Host plant alteration of detoxication activity in Papilio glaucus glaucus. Entomol Exp Appl 50:29–35

    Article  CAS  Google Scholar 

  • Lo N, Evans TA (2007) Phylogenetic diversity of the intracellular symbiont Wolbachia in termites. Mol Phylogenet Evol 44:461–466

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Paraskevopoulos C, Bourtzis K, O’Neill SL, Werren JH, Bordenstein SR, Bandi C (2007) Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int J Syst Evol Microbiol 57:654–657

    Article  PubMed  CAS  Google Scholar 

  • Majerus MEN, Hurst GDD (1997) Ladybirds as a model for the study of male-killing symbionts. Entomophaga 42(1/2):13–20

    Article  Google Scholar 

  • McMeniman CJ, Lane AM, Fong AW, Voronin DA, Iturbe-Ormaetxe I, Yamada R, McGraw EA, O’Neill SL (2008) Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl Environ Microbiol 74(22):6963–6969

    Article  PubMed  CAS  Google Scholar 

  • McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang Y-F, O’Neill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144

    Article  PubMed  CAS  Google Scholar 

  • Moran NA (2006) Symbiosis. Curr Biol 16(20):866–871

    Article  CAS  Google Scholar 

  • Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc Biol Sci 253:167–171

    Article  Google Scholar 

  • Moran NA, Baumann P, von Dohlen C (1994) Use of DNA sequences to reconstruct the history of the association between members of the Sternorrhyncha (Homoptera) and their bacterial endosymbionts. Eur J Entomol 91:79–83

    Google Scholar 

  • Moran NA, Dunbar HE, Wilcox JL (2005) Regulation of transcription in a reduced bacterial genome: nutrient-provisioning genes of the obligate symbiont Buchnera aphidicola. J Bacteriol 187(12):4229–4237

    Article  PubMed  CAS  Google Scholar 

  • Moreira LA, Iturbe-ormaetxe I, Jeffery JAL, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van der Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya and Plasmodium. Cell 139(7):1268–1278

    Article  PubMed  Google Scholar 

  • Morishita and Kazuhiko (2002) A migrant from an oceanic island – Hypolimnas bolina, 6 days stay near Zushi Beach, Kanagawa, Japan. Butterflies 32:24–26

    Google Scholar 

  • Mosavi LK, Cammett TJ, Desrosiers DC, Peng Z-Y (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448

    Article  PubMed  CAS  Google Scholar 

  • Nafus DM (1993) Movement of introduced biological control agents onto nontarget butterflies, Hypolimnas spp. (Lepidoptera: Nymphalidae). Environ Entomol 22(2):265–272

    Google Scholar 

  • Narita S, Kageyama D, Nomura M, Fukatsu T (2007) Unexpected mechanism of symbiont-induced reversal of insect sex: feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development. Appl Environ Microbiol 73(13):4332–4341

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Kodama K (1996) Phylogenetic position of yeast-like endosymbionts of Anobiid beetles. Appl Environ Microbiol 62(1):162–167

    PubMed  CAS  Google Scholar 

  • O’Neill SL, Hoffmann AA, Werren JH (1997) Influencial passengers,inherited microorganisms and arthropod reproduction. Oxford University Press Inc., New York

    Google Scholar 

  • Oliver KM, Campos J, Moran NA, Hunter MS (2007) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275:293–299

    Article  Google Scholar 

  • Patrick BH (2004) Invasion of the blue moon butterfly in Taranaki. Weta 28:45–46

    Google Scholar 

  • Perlman SJ, Kelly SE, Hunter MS (2008) Population biology of cytoplasmic incompatibility: maintenance and spread of Cardinium symbionts in a parasitic wasp. Genetics 178:1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Poulton EB (1923) All female families of Hypolimnas bolina, bred in Fiji by HW Simmonds. Proc R Ent Soc Lond 1923:9–12

    Google Scholar 

  • Ramsay GW (1971) The blue moon butterfly Hypolimnas bolina nerina in New Zealand during autumn, 1971. N Z Entomol 5:73–75

    Article  Google Scholar 

  • Ramsay GW, Ordish RG (1966) The Australian blue moon butterfly Hypolimnas bolina nerina (F.) in New Zealand. NZ J Sci 9:719–729

    Google Scholar 

  • Randerson JP, Smith NGC, Hurst LD (2000) The evolutionary dynamics of male-killers and their hosts. Heredity 84:152–160

    Article  PubMed  Google Scholar 

  • Riegler M, Charlat S, Stauffer C, Mercot H (2004) Wolbachia transfer from Rhagoletis cerasi to Drosophila simulans: investigating the outcomes of host-symbiont coevolution. Appl Environ Microbiol 70(1):273–279

    Article  PubMed  CAS  Google Scholar 

  • Rigaud T (1997) Inherited microorganisms and sex determination of arthropod hosts. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers, inherited microorganisms and arthropod reproduction. Oxford University Press Inc, New York, pp 81–101

    Google Scholar 

  • Ruan Y-M, Xu J, Liu S-S (2006) Effects of antibiotics on fitness of the B biotype and a non-B biotype of the whitefly Bemisia tabaci. Entomol Exp Appl 121:159–166

    Article  Google Scholar 

  • Russel JA, Moran NA (2005) Horizontal transfer of bacterial symbiont: heritability and fitness in a novel aphid host. Appl Environ Microbiol 71(12):7987–7994

    Article  CAS  Google Scholar 

  • Ryan PA, Harris AC (1990) A note of recent records of Australian butterflies in New Zealand. N Z Entomol 13:40–41

    Article  Google Scholar 

  • Sakamoto H, Ishikawa Y, Sasaki T, Kikuyama S, Tatsuki S, Hoshizaki S (2005) Transinfection reveals the crucial importance of Wolbachia genotypes in determining the type of reproductive alteration in the host. Genet Res 85:205–210

    Article  PubMed  Google Scholar 

  • Sasaki T, Kubo T, Ishikawa H (2002) Interspecific transfer of Wolbachia between two lepidopteran insects expressing cytoplasmic incompatibility: a Wolbachia variant naturally infecting Cadra cautella causes male-killing in Ephesia kuehniella. Genetics 162:1313–1319

    PubMed  Google Scholar 

  • Sasaki T, Massaki N, Kubo T (2005) Wolbachia variant that induces two distinct reproductive phenotypes in different hosts. Heredity 95:389–393

    Article  PubMed  CAS  Google Scholar 

  • Simmonds HW (1926) Sex ratio of Hypolimnas bolina in Viti Levu, Fiji. Proc R Ent Soc Lond 1:29–32

    Google Scholar 

  • Sinkins SP, Walker T, Lynd AR, Steven AR, Makepeace BL, Godfray HC, Parkhill J (2005) Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature 14:257–260

    Article  CAS  Google Scholar 

  • Stamp NE, Bowers MD (1988) Direct and indirect effects of predatory wasps (Polistes sp.: Vespidae) on gregarious caterpillars (Hemileuca lucina: Saturniidae). Oecologia 75:619–624

    Article  Google Scholar 

  • Stouthamer R, Kazmer D (1994) Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73:317–327

    Article  Google Scholar 

  • Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102

    Article  PubMed  CAS  Google Scholar 

  • Taylor MJ, Hoerauf A (1999) Wolbachia bacteria of filarial nematodes. Parasitol Today 15(11):437–442

    Article  PubMed  CAS  Google Scholar 

  • Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6(12):2753–2763

    Article  CAS  Google Scholar 

  • Tjaden B, Goodwin SS, Opdyke JA, Guillier M, Fu DX, Gottesman S, Storz G (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34(9):2791–2802

    Article  PubMed  CAS  Google Scholar 

  • Tram U, Sullivan W (2002) Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296:1124–1126

    Article  PubMed  CAS  Google Scholar 

  • van Nouhuys S, Hanski I (2005) Metacommunities of butterflies, their host plant, and their parasitoids. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities spatial dynamics and ecological communities. University of Chicago Press, USA

    Google Scholar 

  • Vandekerckhove TTM, Watteyne S, Willems A, Swings JG, Mertens J, Gillis M (1999) Phylogenetic analysis of the 16 S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexpoda, Collembola) and its implications for Wolbachia taxonomy. FEMS Microbiol Lett 180:179–286

    Google Scholar 

  • Veneti Z, Bentley JK, Koana T, Braig HR, Hurst GDD (2005) A functional dosage compensation complex required for male-killing in Drosophila. Science 307:1461–1463

    Article  PubMed  CAS  Google Scholar 

  • Walker T, Klasson L, Sebaihia M, Sanders MJ, Thomson NR, Parkhill J, Sinkins SP (2007) Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biol 5(39):1–9

    Google Scholar 

  • Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482

    Article  PubMed  CAS  Google Scholar 

  • Wen Z, Rupasinghe S, Niu G, Berenbaum MR, Schuler MA (2006) CYP6B1 and CYP6B3 of the Black Swallowtail (Papilio polyxenes): adaptative evolution through subfunctionalization. Mol Biol Evol 23(12):2434–2443

    Article  PubMed  CAS  Google Scholar 

  • Werren JH (1987) The coevolution of autosomal and cytoplasmic sex ratio factors. J Theor Biol 124:317–334

    Article  Google Scholar 

  • Werren JH, O’Neill SL (1997) The evolution of heritable symbionts. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers, inherited microorganisms and arthropods reproduction. New York, Oxford University Press Inc., pp 1–41

    Google Scholar 

  • Werren JH, Windsor D, Guo L (1995) Distribution of Wolbachia among neotropical arthropods. Proc Biol Sci 262:197–204

    Article  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Herve Tettelin, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:327–341

    Article  CAS  Google Scholar 

  • Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–658

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Rousset F, O’Neill SL (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265(1395):509–515

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. I. Iturbe-Ormaetxe, Dr. M. Woolfit and Dr. P. Cook for very constructive comments on the manuscript. We are grateful to the Australian Research Council (DP0772992) and to The University of Queensland (UQCS and UQIRTA) for provision of the funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Duplouy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duplouy, A., O’Neill, S.L. (2010). Male-Killing Wolbachia in the Butterfly Hypolimnas bolina . In: Pontarotti, P. (eds) Evolutionary Biology – Concepts, Molecular and Morphological Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12340-5_13

Download citation

Publish with us

Policies and ethics