Skip to main content

Uranium, Thorium and Anthropogenic Radionuclides as Atmospheric Tracers

  • Chapter
  • First Online:

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Anthropogenic radionuclides (137Cs, 90Sr, Pu isotopes and others) and uranium and thorium in rainwater and airborne dust are useful tracers for better understanding of atmospheric transport processes, micrometeorological processes, and natural and human induced environmental changes. Typically, analyses on spatial and temporal changes of anthropogenic radonuclides have aided to constrain the time scale of atmospheric transport of aerosols, such as stratosphere and troposphere residence times of aerosols. Although uranium and thorium in the atmosphere are used primarily as tracers of soil dust, their levels and isotope ratios have been significantly perturbed by anthropogenic sources, (e.g., fly ash and accidental releases of uranium). Therefore, uranium, thorium and their isotope ratios in airborne dust and rainwater reflect environmental changes caused by human activities and climate change. Taking into account that rates of anthropogenic radioactive fallout have recently been boosted by the resuspension of radionuclides in deposited particles, recent variations of anthropogenic radionuclides in rainwater and surface air, as well as thorium and uranium isotopes, is important tracers to study ongoing terrestrial environmental changes due to human activities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aoyama M (1988) Evidence of stratospheric fallout of caesium isotopes from the Chernobyl accident. Geophys Res Lett 15:327–330

    Google Scholar 

  • Aoyama M (1999) Geochemical studies on behavior of anthropogenic radionuclides in the atmosphere, PhD Thesis, Kanazawa University

    Google Scholar 

  • Aoyama M, Hirose K, Suzuki Y, Inoue H, Sugimura Y (1986) High level radioactive nuclides in Japan in May. Nature 321:819–820

    Google Scholar 

  • Aoyama M, Hirose K, Sugimura Y (1991) The temporal variation of stratospheric fallout derived from the Chernobyl accident. J Environ Radioact 13:103–115

    Google Scholar 

  • Aoyama M, Hirose K, Takatani S (1992) Particle size dependent dry deposition velocity of the Chernobyl radioactivity. In: Schwartz SE, Slinn WGN (eds) Precipitation scavenging and atmospheric-surface exchange processes: fifth international conference, hemisphere, vol 3., pp 1581–1593

    Google Scholar 

  • Aoyama M, Hirose K, Igarashi Y (2006) Re-construction and updating our understanding on the global weapons tests 137Cs fallout. J Environ Monitor 8:431–438

    Google Scholar 

  • Arimoto R, Webb JL, Conley M (2005) Radioactive contamination of atmospheric dust over southeastern New Mexico. Atmos Environ 39:4745–4754

    Google Scholar 

  • Barrie LA (1985) Scavenging ratios, wet deposition, and in-cloud oxidation: an application to the oxides of sulphur and nitrogen. J Geophys Res 90:5789–5799

    Google Scholar 

  • Baskaran M, Coleman CH, Santschi PH (1993) Atmospheric depositional fluxes of 7Be and 210Pb at Galveston and College Station, Texas. J Geophys Res 98:20, 555–520, 571

    Google Scholar 

  • Baskaran M, Hong GH, Santschi PH (2009) Radionuclide analysis in seawater. In: Wurl O (ed) Practical guidelines for the analysis of seawater. CRC Press, Boca Raton, pp 259–304

    Google Scholar 

  • Berne A (1995) Use of EICroM TRU RESIN in the determination of americium, plutonium and uranium in air filter and water samples. USDOE Report EML-575

    Google Scholar 

  • Cambray RS, Fisher EMR et al (1968) Radioactive fallout in air and rain: Result to the middle of 1968. AERE-R 5899 HMSO, London

    Google Scholar 

  • Chamizo E, Jimenez-Romos MC et al (2008) Isolation of Pu-isotopes from environmental samples using ion chromatography for accelerator mass spectrometry and alpha spectrometry. Anal Chim Acta 606:239–245

    Google Scholar 

  • Crecelius EA, Robertson DE et al (1978) Atmospheric deposition of 7Be and other elements on the Washington coast. Pacific Northwest Laboratory Annual Report for 1977 to the DOE Assistant Secretary for Environment: Ecological Sciences, PNL-2500 PT-2, Battelle, Pacific Northwest Laboratory, pp 7.25–7.26

    Google Scholar 

  • Englemann RJ (1971) Scavenging prediction using ratios of concentrations in air and precipitation. J Appl Meteorol 10:493–497

    Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New York

    Google Scholar 

  • Feng J-L, Zhu L-P et al (2008) Heavy dust fall in Beijing, on April 16–17, 2006: geochemical properties and indications of the dust provenance. Geochem J 42:221–236

    Google Scholar 

  • Fujiwara H, Fukuyama T et al (2007) Deposition of atmospheric 137Cs in Japan associated with the Asian dust event of March 2002. Sci Total Environ 384:306–315

    Google Scholar 

  • Grabowska S, Mietelski JW et al (2003) Gamma emitters on micro-Becquerel activity level in air at Krakow (Poland). J Atmos Chem 46:103–116

    Google Scholar 

  • Hardy EPJr (1977) Final tabulation of monthly 90Sr data, 1954–1976. USERDE Report HASL-329

    Google Scholar 

  • Harley JH (1980) Plutonium in the environment– a review. J Radiat Res 21:83–104

    Google Scholar 

  • Harvey MJ, Matthews KM (1989) 7Be deposition in a high-rainfall area of New Zealand. J Atmos Chem 8:299–306

    Google Scholar 

  • Hirose K (1995) Geochemical studies on the Chernobyl radioactivity in environment. J Radioanal Nucl Chem Articles 197:315–335

    Google Scholar 

  • Hirose K (2000) Dry and wet deposition behaviors of thorium isotopes. J Aerosol Res Jpn 15:256–263

    Google Scholar 

  • Hirose K, Aoyama M et al (1987) Annual deposition of Sr-90, Cs-137 and Pu-239,240 from the 1961–1980 nuclear explosions: a simple model. J Meteor Soc Japan 65:259–277

    Google Scholar 

  • Hirose K, Takatani S, Aoyama M (1993) Wet deposition of radionuclides derived from the Chernobyl accident. J Atmos Chem 17:61–71

    Google Scholar 

  • Hirose K, Igarashi Y et al (2001) Long-term trends of plutonium fallout observed in Japan. In: Kudo A (ed) Plutonium in the environment. Elsevier Science, Amsterdam, pp 251–266

    Google Scholar 

  • Hirose K, Igarashi Y et al (2003) Recent trends of plutonium fallout observed in Japan: plutonium as a proxy for desertification. J Environ Monitor 5:1–7

    Google Scholar 

  • Hirose K, Kim CK et al (2004) Plutonium deposition observed in Daejeon, Korea: wet and dry depositions of plutonium. Sci Total Environ 332:243–252

    Google Scholar 

  • Hirose K, Igarashi Y, Aoyama M (2007) Recent trends of plutonium fallout observed in Japan: comparison with natural lithogenic radionuclides, thorium isotopes. J Radioanal Nucl Chem 273:115–118

    Google Scholar 

  • Hirose K, Igarashi Y, Aoyama M (2008) Analysis of 50 years records of atmospheric deposition of long-lived radionuclides in Japan. Appl Radiat Isot 66:1675–1678

    Google Scholar 

  • Hirose K, Igarashi Y et al (2010) Depositional behaviors of plutonium and thorium at Tsukuba and Mt Haruna in Japan indicate the sources of atmospheric dust. J Environ Radioact 101:106–112

    Google Scholar 

  • Hirota M, Nemoto K et al (2004) Spatial and temporal variations of atmospheric 85Kr observing during 1995–2001 in Japan: estimation of atmospheric 85Kr inventory in the northern hemisphere. J Rad Res 45:405–413

    Google Scholar 

  • Hong G-H et al (2011) Applications of anthropogenic radionuclides as tracers to investigate marine environmental processes. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Heidelberg

    Google Scholar 

  • IAEA (1986) Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident. Safety Series No. 75-INSAG-1, International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2006) Experimental consequences of Chernobyl accident and their mediation: twenty years of experience. Report of the Chernobyl Forum Expert Group ‘Environment’, Radiological assessment reports series, International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA/AQ/11 (2009) A procedure for the rapid determination of Pu isotopes and Am-241 in soil and sediment samples by alpha spectrometry, IAEA Analytical Quality in Nuclear Application Series No. 11, International Atomic Energy Agency, Vienna

    Google Scholar 

  • Igarashi Y, Otsuji-Hatori M, Hirose K (1996) Recent deposition of 90Sr and 137Cs observed in Tsukuba. J Environ Radioact 31:157–169

    Google Scholar 

  • Igarashi Y, Aoyama M et al (2001) Is it possible to use 90Sr and 137Cs as tracers for the aeolian transport? Water Air Soil Poll 130:349–354

    Google Scholar 

  • Igarashi Y, Aoyama M et al (2003) Resuspension: decadal monitoring time series of the anthropogenic radioactivity deposition in Japan. J Rad Res 44:319–328

    Google Scholar 

  • Igarashi Y, Inomata Y et al (2009) Possible change in Asian dust source suggested by atmospheric anthropogenic radionuclides during the 2000s. Atmos Environ 43:2971–2980

    Google Scholar 

  • Karlsson L, Hernandez F et al (2008) Using 137Cs and 40K to identify natural Saharan dust contributions to PM10 concentrations and air quality impairment in the Canary Islands. Atoms Environ 42:7034–7042

    Google Scholar 

  • Katsuragi Y (1983) A study of 90Sr fallout in Japan. Papers Meteor Geophys 33:277–291

    Google Scholar 

  • Katsuragi Y, Aoyama M (1986) Seasonal variation of Sr-90 fallout in Japan through the end of 1983. Pap Meteor Geophys 37:15–36

    Google Scholar 

  • Katsuragi Y, Hirose K, Sugimura Y (1982) A study of plutonium fallout in Tokyo through the end of 1966. Papers Meteor Geophys 33:85–93

    Google Scholar 

  • Kikawada Y, Oda K et al (2009) Anomalous uranium isotope ratio in atmospheric deposits in Japan. J Nucl Sci Tech 46:1094–1098

    Google Scholar 

  • Kim CS, Kim CK et al (2000) Rapid determination of Pu isotopes and atom ratios in small amounts of environmental samples by an on-line sample pre-treatment system and isotope dilution high resolution inductively coupled plasma spectrometry. J Anal At Spectrom 15:247–255

    Google Scholar 

  • Kim CS, Kim CK et al (2007) Determination of Pu isotope concentrations and isotope ratio by inductively coupled plasma mass spectrometry: a revies of analytical methodology. J Anal At Spectrom 22:827–841

    Google Scholar 

  • Kolb W (1989) Seasonal fluctuations of the uranium and thorium contents of aerosols in ground-level air. J Environ Radioact 9:61–75

    Google Scholar 

  • Krey PW, Krajewksi BT (1970) Comparison of atmospheric transport model calculations with observations of radioactive debris. J Geophys Res 75:2901–2908

    Google Scholar 

  • Krey PW, Leifer R et al (1979) Atmospheric burn-up of the Cosmos-954 reactor. Science 205:583–585

    Google Scholar 

  • Kurosaki Y, Mikami M (2003) Recent frequent dust events and their relation to surface wind in East Asia. Geophys Res Lett 30:1736. doi:10.1029/2003GL017261

    Article  Google Scholar 

  • Lee SH, Pham MK, Povinec PP (2002) Radionuclide variations in the air over Monaco. J Radioanal Nucl Chem 254:445–453

    Google Scholar 

  • Lee HN, Igarashi Y et al (2006) Global model simulations of the transport of Asian and Sahara dust: total deposition of dust mass in Japan. Water Air Soil Poll 169:137–166

    Google Scholar 

  • Lu X, Jia X, Wang F (2006) Natural radioactivity of coal and its by-products in the Baoji coal-fire power plant, China. Cur Sci 91:1508–1511

    Google Scholar 

  • Lujaniené G, Aninkevicius V, Lujanas V (2009) Artificial radionuclides in the atmosphere over Lithuania. J Environ Radioact 100:108–119

    Google Scholar 

  • Martin P (2003) Uranium and thorium series radionuclides in rainwater over several tropical storms. J Environ Radioact 65:1–18

    Google Scholar 

  • Matsunami T, Mamuro T (1975) Study of uranium deposition by basin method. Ann Rep Radiat Cen Osaka Pref 16:22–24

    Google Scholar 

  • McNeary D, Baskaran M (2003) Depositional characteristics of 7Be and 210Pb in southeastern Michigan. J Geophy Res 108: D7, 4201, doi:10.1029/2002JD003021.

  • Nicholson KW (1988) A review of particle resuspension. Atmos Environ 22:2639–2651

    Google Scholar 

  • Otsuji-Hatori M, Igarashi Y, Hirose K (1996) Preparation of a reference fallout material for activity measurements. J Environ Radioact 31:143–155

    Google Scholar 

  • Papastefanou C (2010) Escaping radioactivity from coal-fired plants (CPPs) due to coal burning and associated hazards: a review. J Environ Radioact 101:191–200

    Google Scholar 

  • Pennannen AS, Sillanpää M et al (2007) Performance of a high-volume cascade impactor in six European urban environments: mass measurement and chemical characterization of size segregated particulate samples. Sci Total Environ 15:297–310

    Google Scholar 

  • Reiter ER, Bauer E (1975) Residence times of atmospheric pollutant. CIAP Monogr.1, US Department of Transportation, Washington DC

    Google Scholar 

  • Roos P (2008) Analysis of radionuclides using ICP-MS. In: Povinec PP (ed) Analysis of environmental radionuclides, Elsevier Science, Amsterdam, pp 295–330

    Google Scholar 

  • Rosner G, Winkler R (2001) Long-term variation (1986–1998) of post-Chernobyl 90Sr, 137Cs, 238Pu and 239,240Pu concentrations in air, depositions to ground, resuspension factors and resuspension rates in south Germany. Sci Total Environ 273:11–25

    Google Scholar 

  • Sakuragi Y, Meason JL, Kuroda PK (1983) Uranium and plutonium isotopes in the atmosphere. J Geophys Res 88:3718–3724

    Google Scholar 

  • Schmel GA (1980) Particle and gas dry deposition: a review. Atmos Environ 14:983–1011

    Google Scholar 

  • Slinn WGN (1978) Parametrizations for resuspension and for wet and dry deposition of particles and gases for use in radiation dose calculations. Nucl Saf 19:205–219

    Google Scholar 

  • Tadmor J (1986) Radoactivity from coal-fired plants. A review. J Environ Radioact 4:177–204

    Google Scholar 

  • Turekian KK, Cochran JK (1981) 210Pb in surface air at Enewetak and the Asian dust to the Pacific. Nature 292:522–524

    Google Scholar 

  • Turekian KK, Graustein WC, Cochran JK (1989) Lead-210 in the SEAREX Program: an aerosol tracer across the Pacific. In: Duce RA (ed) Chemical oceanography, vol 10. Academic, San Diego, pp 51–80

    Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation, vol. 1: Sources, United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York

    Google Scholar 

  • Warneke T, Croudace IW et al (2002) A new ground-level fallout record of uranium and plutonium isotopes for northern temperate latitudes. Earth Planet Sci Lett 203:1047–1057

    Google Scholar 

  • Weiss W, Sittkus A et al (1983) Large-scale atmospheric mixing derived from meridional profiles of krypton 85. J Geophys Res 88:8574–8578

    Google Scholar 

  • Weyer S, Anbar AD et al (2008) Natural fractionation of 238U/235U. Geochim Cosmochim Acta 72:345–359

    Google Scholar 

  • Yang J (2007) Concentration and distribution of uranium in Chinese coals. Energy 32:203–212

    Google Scholar 

  • Yoschenko VI, Kashparov AV et al (2006) Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part I, Fire experiments. J Environ Radioact 86:143–163

    Google Scholar 

  • Zhang Y, Zheng J et al (2010) Characterization of Pu concentration and its isotopic composition in a reference fallout material. Sci Total Environ 408:1139–1144

    Google Scholar 

Download references

Acknowledgements

We thank Pavel P. Povinec of Comenius University and Michio Aoyama and Yasuhito Igarashi of the Geochemical Research Department, MRI, for their help in preparing the manuscript. We also thank two reviewers (Gi-Hoon Hong and Paul Martin) and the editor (Mark Baskaran) for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hirose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirose, K. (2012). Uranium, Thorium and Anthropogenic Radionuclides as Atmospheric Tracers. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_29

Download citation

Publish with us

Policies and ethics