Skip to main content

The Directed Hausdorff Distance between Imprecise Point Sets

  • Conference paper
Book cover Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

We consider the directed Hausdorff distance between point sets in the plane, where one or both point sets consist of imprecise points. An imprecise point is modelled by a disc given by its centre and a radius. The actual position of an imprecise point may be anywhere within its disc. Due to the direction of the Hausdorff Distance and whether its tight upper or lower bound is computed there are several cases to consider. For every case we either show that the computation is NP-hard or we present an algorithm with a polynomial running time. Further we give several approximation algorithms for the hard cases and show that one of them cannot be approximated better than with factor 3, unless P=NP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Behrends, B., Blömer, J.: Approximate matching of polygonal shapes. Ann. Math. Artif. Intell. 13, 251–266 (1995)

    Article  MATH  Google Scholar 

  2. Alt, H., Guibas, L.: Discrete Geometric Shapes: Matching, Interpolation, and Approximation - A Survey. In: Handbook on Computational Geometry, pp. 251–265 (1995)

    Google Scholar 

  3. Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Proc. 20th Ann. ACM Symp. on Theory of Comp., pp. 434–444 (1988)

    Google Scholar 

  4. Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Practical methods for approximate geometric pattern matching under rigid motion. In: Proc. 10th Annu. ACM Sympos. Comput. Geom, pp. 103–112 (1994)

    Google Scholar 

  6. Goodrich, M.T., Snoeyink, J.: Stabbing parallel segments with a convex polygon. Comput. Vision Graph. Image Process. 49, 152–170 (1990)

    Article  MATH  Google Scholar 

  7. Guibas, L.J., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms from imprecise computations. In: Proc. 5th Annu. ACM Sympos. Comput. Geom, pp. 208–217 (1989)

    Google Scholar 

  8. Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congruence. Comput. Geom. Theory Appl. 4, 137–156 (1994)

    MATH  MathSciNet  Google Scholar 

  9. Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets (Preprint, 2009), http://arXiv.org/abs/0909.4642

  10. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mukhopadhyay, A., Greene, E., Rao, S.V.: On intersecting a set of isothetic line segments with a convex polygon of minimum area. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part I. LNCS, vol. 4705, pp. 41–54. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Mukhopadhyay, A., Kumar, C., Greene, E., Bhattacharya, B.: On intersecting a set of parallel line segments with a convex polygon of minimum area. Inf. Proc. Let. 105(2), 58–64 (2008)

    Article  MathSciNet  Google Scholar 

  13. Nagai, T., Tokura, N.: Tight Error Bounds of Geometric Problems on Convex Objects with Imprecise Coordinates. In: Japanese Conference on Discrete and Computational Geometry, pp. 252–263 (2000)

    Google Scholar 

  14. van Kreveld, M., Löffler, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 446–457. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T. (2009). The Directed Hausdorff Distance between Imprecise Point Sets. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics