Skip to main content

Adaptive Optimal Feedback Control with Learned Internal Dynamics Models

  • Chapter
From Motor Learning to Interaction Learning in Robots

Part of the book series: Studies in Computational Intelligence ((SCI,volume 264))

Abstract

Optimal Feedback Control (OFC) has been proposed as an attractive movement generation strategy in goal reaching tasks for anthropomorphic manipulator systems. Recent developments, such as the Iterative Linear Quadratic Gaussian (ILQG) algorithm, have focused on the case of non-linear, but still analytically available, dynamics. For realistic control systems, however, the dynamics may often be unknown, difficult to estimate, or subject to frequent systematic changes. In this chapter, we combine the ILQG framework with learning the forward dynamics for simulated arms, which exhibit large redundancies, both, in kinematics and in the actuation. We demonstrate how our approach can compensate for complex dynamic perturbations in an online fashion. The specific adaptive framework introduced lends itself to a computationally more efficient implementation of the ILQG optimisation without sacrificing control accuracy – allowing the method to scale to large DoF systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbeel, P., Quigley, M., Ng, A.Y.: Using inaccurate models in reinforcement learning. In: Proc. Int. Conf. on Machine Learning (ICML), pp. 1–8 (2006)

    Google Scholar 

  2. Atkeson, C.G.: Randomly sampling actions in dynamic programming. In: Proc. Int. Symp. on Approximate Dynamic Programming and Reinforcement Learning, pp. 185–192 (2007)

    Google Scholar 

  3. Atkeson, C.G., Moore, A., Schaal, S.: Locally weighted learning for control. AI Review 11, 75–113 (1997)

    Google Scholar 

  4. Atkeson, C.G., Schaal, S.: Learning tasks from a single demonstration. In: Proc. Int. Conf. on Robotics and Automation (ICRA), Albuquerque, New Mexico, pp. 1706–1712 (1997)

    Google Scholar 

  5. Bertsekas, D.P.: Dynamic programming and optimal control. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  6. Conradt, J., Tevatia, G., Vijayakumar, S., Schaal, S.: On-line learning for humanoid robot systems. In: Proc. Int. Conf. on Machine Learning (ICML), pp. 191–198 (2000)

    Google Scholar 

  7. Corke, P.I.: A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine 3(1), 24–32 (1996)

    Article  Google Scholar 

  8. D’Souza, A., Vijayakumar, S., Schaal, S.: Learning inverse kinematics. In: Proc. Int. Conf. on Intelligence in Robotics and Autonomous Systems (IROS), Hawaii, pp. 298–303 (2001)

    Google Scholar 

  9. Dyer, P., McReynolds, S.: The Computational Theory of Optimal Control. Academic Press, New York (1970)

    Google Scholar 

  10. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neuroscience 5, 1688–1703 (1985)

    Google Scholar 

  11. Grebenstein, M., van der Smagt, P.: Antagonism for a highly anthropomorphic hand-arm system. Advanced Robotics 22(1), 39–55 (2008)

    Article  Google Scholar 

  12. Jacobson, D.H., Mayne, D.Q.: Differential Dynamic Programming. Elsevier, New York (1970)

    MATH  Google Scholar 

  13. Katayama, M., Kawato, M.: Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse model. Biological Cybernetics 69, 353–362 (1993)

    MATH  Google Scholar 

  14. Klanke, S., Vijayakumar, S., Schaal, S.: A library for locally weighted projection regression. Journal of Machine Learning Research 9, 623–626 (2008)

    MathSciNet  Google Scholar 

  15. Li, W.: Optimal Control for Biological Movement Systems. PhD dissertation, University of California, San Diego (2006)

    Google Scholar 

  16. Li, W., Todorov, E.: Iterative linear-quadratic regulator design for nonlinear biological movement systems. In: Proc. 1st Int. Conf. Informatics in Control, Automation and Robotics (2004)

    Google Scholar 

  17. Li, W., Todorov, E.: Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system. International Journal of Control 80(9), 14391–14453 (2007)

    Article  MathSciNet  Google Scholar 

  18. Nguyen-Tuong, D., Peters, J., Seeger, M., Schoelkopf, B.: Computed torque control with nonparametric regressions techniques. In: American Control Conference (2008)

    Google Scholar 

  19. Özkaya, N., Nordin, M.: Fundamentals of biomechanics: equilibrium, motion, and deformation. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  20. Schaal, S.: Learning Robot Control. In: The handbook of brain theory and neural networks, pp. 983–987. MIT Press, Cambridge (2002)

    Google Scholar 

  21. Shadmehr, R., Mussa-Ivaldi, F.A.: Adaptive representation of dynamics during learning of a motor task. The Journal of Neurosciene 14(5), 3208–3224 (1994)

    Google Scholar 

  22. Shadmehr, R., Wise, S.P.: The Computational Neurobiology of Reaching and Ponting. MIT Press, Cambridge (2005)

    Google Scholar 

  23. Stengel, R.F.: Optimal control and estimation. Dover Publications, New York (1994)

    MATH  Google Scholar 

  24. Thrun, S.: Monte carlo POMDPs. In: Advances in Neural Information Processing Systems (NIPS), pp. 1064–1070 (2000)

    Google Scholar 

  25. Todorov, E.: Optimality principles in sensorimotor control. Nature Neuroscience 7(9), 907–915 (2004)

    Article  Google Scholar 

  26. Todorov, E., Jordan, M.: Optimal feedback control as a theory of motor coordination. Nature Neuroscience 5, 1226–1235 (2002)

    Article  Google Scholar 

  27. Todorov, E., Jordan, M.: A minimal intervention principle for coordinated movement. In: Advances in Neural Information Processing Systems (NIPS), pp. 27–34. MIT Press, Cambridge (2003)

    Google Scholar 

  28. Todorov, E., Li, W.: A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: Proc. of the American Control Conference (2005)

    Google Scholar 

  29. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectories in human multijoint arm movements: minimum torque-change model. Biological Cybernetics 61, 89–101 (1989)

    Article  Google Scholar 

  30. Vijayakumar, S., D’Souza, A., Schaal, S.: Incremental online learning in high dimensions. Neural Computation 17, 2602–2634 (2005)

    Article  MathSciNet  Google Scholar 

  31. Vijayakumar, S., D’Souza, A., Shibata, T., Conradt, J., Schaal, S.: Statistical learning for humanoid robots. Autonomous Robots 12(1), 55–69 (2002)

    Article  MATH  Google Scholar 

  32. Wolf, S., Hirzinger, G.: A new variable stiffness design: Matching requirements of the next robot generation. In: Proc. Int. Conf. on Robotics and Automation (ICRA), pp. 1741–1746 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitrovic, D., Klanke, S., Vijayakumar, S. (2010). Adaptive Optimal Feedback Control with Learned Internal Dynamics Models. In: Sigaud, O., Peters, J. (eds) From Motor Learning to Interaction Learning in Robots. Studies in Computational Intelligence, vol 264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05181-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05181-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05180-7

  • Online ISBN: 978-3-642-05181-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics