Skip to main content

Finite Satisfiability in Infinite-Valued Łukasiewicz Logic

  • Conference paper
Scalable Uncertainty Management (SUM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5785))

Included in the following conference series:

Abstract

Although it is well-known that every satisfiable formula in Łukasiewicz’ infinite-valued logic \(\mathcal{L}_{\infty}\) can be satisfied in some finite-valued logic, practical methods for finding an appropriate number of truth degrees do currently not exist. As a first step towards efficient reasoning in \(\mathcal{L}_{\infty}\), we propose a method to find a tight upper bound on this number which, in practice, often significantly improves the worst-case upper bound of Aguzzoli et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguzzoli, S.: An asymptotically tight bound on countermodels for łukasiewicz logic. International Journal of Approximate Reasoning 43, 76–89 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued Łukasiewicz logic. Journal of Logic, Language, and Information 9, 5–29 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aguzzoli, S., Gerla, B.: Finite-valued reductions of infinite-valued logics. Archive for Mathematical Logic 41, 361–399 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and datatypes. Fuzzy Sets and Systems (in press) doi:doi:10.1016/j.fss.2009.03.006

    Google Scholar 

  5. Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  6. Ernst, M., Millstein, T., Weld, D.: Automatic SAT-compilation of planning problems. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 1169–1176 (1997)

    Google Scholar 

  7. Hähnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics. In: Börger, E., Kleine Büning, H., Richter, M., Schönfeld, W. (eds.) Selected Papers from Computer Science Logic, pp. 248–260. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  8. Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Mathematics and Artificial Intelligence 12, 231–264 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hähnle, R., Escalada-Imaz, G.: Deduction in multivalued logics: a survey. Mathware & Soft Computing 4(2), 69–97 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Janssen, J., Heymans, S., Vermeir, D., De Cock, M.: Compiling fuzzy answer set programs to fuzzy propositional theories. In: Proceedings of the 24th International Conference on Logic Programming, pp. 362–376 (2008)

    Google Scholar 

  11. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: An o(m 2 n) algorithm for minimum cycle basis of graphs. Algorithmica 52, 333–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 16, 1–13 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science 52, 145–153 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued calculus of Łukasiewicz. Theoretical Computer Science 200, 335–366 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Olivetti, N.: Tableaux for Łukasiewicz infinite-valued logic. Studia Logica 73(1), 81–111 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pham, D., Thornton, J., Sattar, A.: Modelling and solving temporal reasoning as propositional satisfiability. Artificial Intelligence 172(15), 1752–1782 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schockaert, S., De Cock, M., Kerre, E.: Spatial reasoning in a fuzzy region connection calculus. Artificial Intelligence 173, 258–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. Mathware & Soft Computing 14(3), 247–259 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 590–603. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Wagner, H.: A new resolution calculus for the infinite-valued propositional logic of Łukasiewicz. In: Proceedings of the International Workshop on First order Theorem Proving, pp. 234–243 (1998)

    Google Scholar 

  22. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 641–653. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schockaert, S., Janssen, J., Vermeir, D., De Cock, M. (2009). Finite Satisfiability in Infinite-Valued Łukasiewicz Logic. In: Godo, L., Pugliese, A. (eds) Scalable Uncertainty Management. SUM 2009. Lecture Notes in Computer Science(), vol 5785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04388-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04388-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04387-1

  • Online ISBN: 978-3-642-04388-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics