Skip to main content

Structural Operational Semantics for Weighted Transition Systems

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5700))

Abstract

Weighted transition systems are defined, parametrized by a commutative monoid of weights. These systems are further understood as coalgebras for functors of a specific form. A general rule format for the SOS specification of weighted systems is obtained via the coalgebraic approach of Turi and Plotkin. Previously known formats for labelled transition systems (GSOS) and stochastic systems (SGSOS) appear as special cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Bergstra, J.A., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 197–292. Elsevier, Amsterdam (2002)

    Google Scholar 

  2. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  3. Bloom, B., Istrail, S., Meyer, A.: Bisimulation can’t be traced. Journal of the ACM 42, 232–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Plotkin, G.D.: A structural approach to operational semantics. DAIMI Report FN-19, Computer Science Department, Aarhus University (1981)

    Google Scholar 

  5. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60-61, 17–139 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sangiorgi, D., Walker, D.: The π-Calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  7. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94, 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Moller, F., Tofts, C.: A temporal calculus of communicating systems. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer, Heidelberg (1990)

    Google Scholar 

  9. Mosses, P.D.: Foundations of Modular SOS. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 70–80. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Mosses, P.D.: Modular structural operational semantics. Journal of Logic and Algebraic Programming 60-61, 195–228 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249, 3–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proc. LICS 1997, pp. 280–291. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  13. Bartels, F.: On Generalised Coinduction and Probabilistic Specification Formats. PhD dissertation, CWI, Amsterdam (2004)

    Google Scholar 

  14. Kick, M.: Rule formats for timed processes. In: Proc. CMCIM 2002. ENTCS, vol. 68, pp. 12–31. Elsevier, Amsterdam (2002)

    Google Scholar 

  15. Klin, B., Sassone, V.: Structural operational semantic for stochastic systems. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 428–442. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Kick, M., Power, J., Simpson, A.: Coalgebraic semantics for timed processes. Information and Computation 204, 588–609 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lenisa, M., Power, J., Watanabe, H.: Category theory for operational semantics. Theoretical Computer Science 327(1-2), 135–154 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  19. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  20. Klin, B.: Bialgebraic methods and modal logic in structural operational semantics. Information and Computation 207, 237–257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Barr, M.: Terminal coalgebras in well-founded set theory. Theoretical Computer Science 114, 299–315 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: A coalgebraic approach. Theoretical Computer Science 221(1-2), 271–293 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moss, L.: Coalgebraic logic. Annals of Pure and Applied Logic 96, 177–317 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klin, B. (2009). Structural Operational Semantics for Weighted Transition Systems . In: Palsberg, J. (eds) Semantics and Algebraic Specification. Lecture Notes in Computer Science, vol 5700. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04164-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04164-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04163-1

  • Online ISBN: 978-3-642-04164-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics