Skip to main content

Numerical Study of the Significance of the Non-Newtonian Nature of Blood in Steady Flow Through a Stenosed Vessel

  • Chapter
  • First Online:
Book cover Advances in Mathematical Fluid Mechanics

Abstract

In this paper we present a comparative numerical study of non-Newtonian shear-thinning and viscoelastic blood flow models through an idealized stenosis. Three-dimensional numerical simulations are performed using a finite volume semidiscretization in space, on structured grids, and a multistage Runge-Kutta scheme for time integration, to investigate the influence of combined effects of inertia, viscosity and viscoelasticity in this particular geometry. This work lays the foundation for future applications to pulsatile flows in stenosed vessels using constitutive models capturing the rheological response of blood, under relevant physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, M., Rajagopal, K.R.: A shear-thinning viscoelastic fluid model for describing the flow of blood. Intern. J. Cardiovasc. Med. Sci. 4(2), 59–68 (2004)

    Google Scholar 

  2. Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw Hill, London (1974)

    Google Scholar 

  3. Berger, S.A., Jou, L.D.: Flows in stenotic vessels. Ann. Rev. Fluid Mech. 32, 347–382 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bird, R., Armstrong, R., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1, second edn. John Willey & Sons, New York (1987)

    Google Scholar 

  5. Bodnár, T., Sequeira, A.: Shear-thinning effects of blood flow past a formed clot. WSEAS Transactions on Fluid Mechanics 1(3), 207–214 (2006)

    Google Scholar 

  6. Bodnár, T., Sequeira, A.: Numerical simulation of the coagulation dynamics of blood. Comput. Math. Methods Med. 9(2), 83–104 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyer, F., Chupin, L., Fabrie, P.: Numerical study of viscoelastic mixtures through a cahn-hilliard flow model. Eur. J. Mech. B Fluids 23(5), 759–780 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caro, C.G., Pedley, T.J., Schroter, R.C., Seed, W.A.: The Mechanics of the Circulation. Oxford University Press, Oxford (1978)

    Google Scholar 

  9. Charm, S.E., Kurland, G.S.: Blood Flow and Microcirculation. John Wiley & Sons, New York (1974)

    Google Scholar 

  10. Chien, S., Usami, S., Dellenback, R.J., Gregersen, M.I.: Blood viscosity: Influence of erythrocyte aggregation. Science 157(3790), 829–831 (1967)

    Article  Google Scholar 

  11. Chien, S., Usami, S., Dellenback, R.J., Gregersen, M.I.: Blood viscosity: Influence of erythrocyte deformation. Science 157(3790), 827–829 (1967)

    Article  Google Scholar 

  12. Chien, S., Usami, S., Dellenback, R.J., Gregersen, M.I.: Shear-dependent deformation of erythrocytes in rheology of human blood. Am. J. Physiol. 219, 136–142 (1970)

    Google Scholar 

  13. Ferry, J.D.: Viscoelastic Properties of Polymers. John Wiley & Sons, New York (1980)

    Google Scholar 

  14. Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In: AIAA 10th Computational Fluid Dynamics Conference, Honolulu (1991). AIAA Paper 91-1596

    Google Scholar 

  15. Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. In: AIAA 14th Fluid and Plasma Dynamic Conference, Palo Alto (1981). AIAA paper 81-1259

    Google Scholar 

  16. Joseph, D.D.: Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag, New York (1990)

    Google Scholar 

  17. Leuprecht, A., Perktold, K.: Computer simulation of non-Newtonian effects of blood flow in large arteries. Computer Methods in Biomechanics and Biomechanical Engineering 4, 149–163 (2001)

    Article  Google Scholar 

  18. Lowe, D.: Clinical Blood Rheology, Vol.I, II. CRC Press, Boca Raton, Florida (1998)

    Google Scholar 

  19. Maxwell, J.C.: On the dynamical theory of gases. Phil. Trans. Roy. Soc. London A157, 26–78 (1866)

    Google Scholar 

  20. Nägele, S., Wittum, G.: On the influence of different stabilisation methods for the incompressible Navier–Stokes equations. J. Comp. Phys. 224, 100–116 (2007)

    Article  MATH  Google Scholar 

  21. Owens, R.G.: A new microstructure-based constitutive model for human blood. J. Non-Newtonian Fluid Mech. 140, 57–70 (2006)

    Article  MATH  Google Scholar 

  22. Picart, C., Piau, J.M., Galliard, H., Carpentier, P.: Human blood shear yield stress and its hematocrit dependence. J. Rheol. 42, 1–12 (1998)

    Article  Google Scholar 

  23. Rajagopal, K., Srinivasa, A.: A thermodynamic frame work for rate type fluid models. J. Non-Newtonian Fluid Mech. 80, 207–227 (2000)

    Article  Google Scholar 

  24. Robertson, A.M.: Review of relevant continuum mechanics. In: G. Galdi, R. Rannacher, A.M. Robertson, S. Turek (eds.) Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars), vol. 37, pp. 1–62. Birkhäuser Verlag, Basel, Boston (2008)

    Google Scholar 

  25. Robertson, A.M., Sequeira, A., Kameneva, M.V.: Hemorheology. In: G. Galdi, R. Rannacher, A.M. Robertson, S. Turek (eds.) Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars), vol. 37, pp. 63–120. Birkhäuser Verlag, Basel, Boston (2008)

    Google Scholar 

  26. Robertson, A.M., Sequeira, A., Owens, R.G.: Rheological models for blood. In: L. Formaggia, A. Quarteroni, A. Veneziani (eds.) Cardiovascular Mathematics. Modeling and simulation of the circulatory system (MS&A, Modeling, Simulations & Applications), vol. 1, pp. 211–241. Springer - Verlag, New York (2009)

    Google Scholar 

  27. Sankar, D.S., Hemalatha, K.: Pulsatile flow of herschel-bulkley fluid through catheterized arteries - a mathematical model. Appl. Math. Model. 31 (8), 1497–1517 (2007)

    Article  MATH  Google Scholar 

  28. Thurston, G.B.: Viscoelasticity of human blood. Biophys. J. 12, 1205–1217 (1972)

    Article  Google Scholar 

  29. Thurston, G.B.: Non-Newtonian viscosity of human blood: Flow induced changes in microstructure. Biorheology 31(2), 179–192 (1994)

    MathSciNet  Google Scholar 

  30. Vierendeels, J., Riemslagh, K., Dick, E.: A multigrid semi-implicit line-method for viscous incompressible and low-mach-number flows on high aspect ratio grids. J. Comput. Phys. 154, 310–344 (1999)

    Article  MATH  Google Scholar 

  31. Vlastos, G., Lerche, D., Koch, B.: The superposition of steady on oscillatory shear and its effect on the viscoelasticity of human blood and a blood-like model fluid. Biorheology 34, 19–36 (1997)

    Article  Google Scholar 

  32. Walburn, F.J., Schneck, D.J.: A constitutive equation for whole human blood. Biorheology 13, 201–210 (1976)

    Google Scholar 

  33. Yeleswarapu, K.K., Kameneva, M.V., Rajagopal, K.R., Antaki, J.F.: The flow of blood in tubes: Theory and experiment. Mech. Res. Comm. 25, 257–262 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adélia Sequeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bodnár, T., Sequeira, A. (2010). Numerical Study of the Significance of the Non-Newtonian Nature of Blood in Steady Flow Through a Stenosed Vessel. In: Rannacher, R., Sequeira, A. (eds) Advances in Mathematical Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04068-9_6

Download citation

Publish with us

Policies and ethics