Skip to main content

Pseudorandom Generators and Typically-Correct Derandomization

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2009, RANDOM 2009)

Abstract

The area of derandomization attempts to provide efficient deterministic simulations of randomized algorithms in various algorithmic settings. Goldreich and Wigderson introduced a notion of “typically-correct” deterministic simulations, which are allowed to err on few inputs. In this paper we further the study of typically-correct derandomization in two ways.

First, we develop a generic approach for constructing typically-correct derandomizations based on seed-extending pseudorandom generators, which are pseudorandom generators that reveal their seed. We use our approach to obtain both conditional and unconditional typically-correct derandomization results in various algorithmic settings. We show that our technique strictly generalizes an earlier approach by Shaltiel based on randomness extractors, and simplifies the proofs of some known results. We also demonstrate that our approach is applicable in algorithmic settings where earlier work did not apply. For example, we present a typically-correct polynomial-time simulation for every language in BPP based on a hardness assumption that is weaker than the ones used in earlier work.

Second, we investigate whether typically-correct derandomization of BPP implies circuit lower bounds. Extending the work of Kabanets and Impagliazzo for the zero-error case, we establish a positive answer for error rates in the range considered by Goldreich and Wigderson. In doing so, we provide a simpler proof of the zero-error result. Our proof scales better than the original one and does not rely on the result by Impagliazzo, Kabanets, and Wigderson that NEXP having polynomial-size circuits implies that NEXP coincides with EXP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. JCSS 45(2), 204–232 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Feigenbaum, J., Fortnow, L.: Random-self-reducibility of complete sets. SICOMP 22(5) (1993)

    Google Scholar 

  3. Goldreich, O., Wigderson, A.: Derandomization that is rarely wrong from short advice that is typically good. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 209–223. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Gutfreund, D., Shaltiel, R., Ta-Shma, A.: Uniform hardness versus randomness tradeoffs for Arthur-Merlin games. Comput. Compl. 12(3–4), 85–130 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Håstad, J.: Computational limitations of small-depth circuits. MIT Press, Cambridge (1987)

    Google Scholar 

  6. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: exponential time vs. probabilistic polynomial time. JCSS 65(4), 672–694 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Impagliazzo, R., Wigderson, A.: Randomness vs time: Derandomization under a uniform assumption. JCSS 63(4), 672–688 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Kabanets, V.: Easiness assumptions and hardness tests: Trading time for zero error. JCSS 63(2), 236–252 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Comput. Compl. 13(1/2), 1–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kannan, R.: Circuit-size lower bounds and nonreducibility to sparse sets. Inf. Cont. 55(1), 40–56 (1982)

    Article  MATH  Google Scholar 

  11. Klivans, A.R., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. SICOMP 31(5), 1501–1526 (2002)

    MATH  Google Scholar 

  12. Miltersen, P.B.: Derandomizing complexity classes. In: Handbook of Randomized Computing, pp. 843–941. Kluwer Academic Publishers, Dordrecht (2001)

    Chapter  Google Scholar 

  13. Nisan, N.: On read-once vs. multiple access to randomness in logspace. Theor. Comp. Sci. 107(1), 135–144 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nisan, N., Wigderson, A.: Hardness vs. randomness. JCSS 49(2), 149–167 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Reingold, O.: Undirected connectivity in log-space. JACM 55(4) (2008)

    Google Scholar 

  16. Shaltiel, R.: Weak derandomization of weak algorithms: explicit versions of Yao’s lemma. In: Proc. Conf. Comput. Compl. (2009)

    Google Scholar 

  17. Shaltiel, R., Umans, C.: Low-end uniform hardness vs. randomness tradeoffs for AM. In: Proc. of the ACM Symp. Theory of Comp., pp. 430–439 (2007)

    Google Scholar 

  18. Toda, S.: PP is as hard as the polynomial-time hierarchy. SICOMP 20(5), 865–877 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Trevisan, L.: Extractors and pseudorandom generators. JACM 48(4), 860–879 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via uniform reductions. Comput. Compl. 16(4), 331–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Viola, E.: Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates. SICOMP 36(5), 1387–1403 (2006)

    MathSciNet  Google Scholar 

  22. Zanko, V.: #P-completeness via many-one reductions. Intl. J. Found. Comp. Sci. 2(1), 77–82 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zimand, M.: Exposure-resilient extractors. In: Proc. Conf. Comput. Compl., pp. 61–72 (2006)

    Google Scholar 

  24. Zimand, M.: Exposure-resilient extractors and the derandomization of probabilistic sublinear time. Comput. Compl. 17(2), 220–253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kinne, J., van Melkebeek, D., Shaltiel, R. (2009). Pseudorandom Generators and Typically-Correct Derandomization. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics