Skip to main content

Connecting the Dots: Molecular Machinery for Distributed Robotics

  • Conference paper
DNA Computing (DNA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5347))

Included in the following conference series:

Abstract

Nature is considered one promising area to search for inspiration in designing robotic systems. Some work in swarm robotics has tried to build systems that resemble distributed biological systems and inherit biology’s fault tolerance, scalability, dependability, and robustness. Such systems, as well as ones in the areas of active self-assembly and amorphous computing, typically use relatively simple components with limited computation, memory, and computational power to accomplish complex tasks, such as forming paths in the presence of obstacles. We demonstrate that such tasks can be accomplished in the well-studied tile assembly model, a model of molecular self-assembly that is strictly simpler than other biologically-inspired models. Our systems use a small number of distinct components to find minimal-length paths in time linear in the length of the path while inheriting scalability and fault tolerance of the underlying natural process of self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications of the ACM 43(5), 74–82 (2000)

    Article  Google Scholar 

  2. Arbuckle, D.J., Requicha, A.A.G.: Active self-assembly. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2004), New Orleans, LA, USA, pp. 896–901 (April 2004)

    Google Scholar 

  3. Clement, L., Nagpal, R.: Self-assembly and self-repairing topologies. In: Proceedings of the Workshop on Adaptability in Multi-Agent Systems, RoboCup Australian Open (January 2003)

    Google Scholar 

  4. Kondacs, A.: Biologically-inspired self-assembly of two-dimensional shapes using global-to-local compilation. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico (August 2003)

    Google Scholar 

  5. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape Using Biologically-Inspired Local Interactions and Origami Mathematics. PhD thesis, Massachussetts Institute of Technology, Cambridge, MA, USA (June 2001)

    Google Scholar 

  6. Nagpal, R., Shrobe, H.E., Bachrach, J.: Organizing a global coordinate system from local information on an ad hoc sensor network. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Butera, W.J.: Programming a Paintable Computer. PhD thesis, Massachussetts Institute of Technology, Cambridge, MA, USA (February 2002)

    Google Scholar 

  8. Klavins, E.: Programmable self-assembly. Control Systems Magazine 24(4), 43–56 (2007)

    Article  Google Scholar 

  9. McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: Human-robot interface design for large swarms of autonomous mobile robots. In: Proceedings of the AAAI Spring Symposium, Stanford, CA, USA (March 2006)

    Google Scholar 

  10. Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.: Multimode locomotion for reconfigurable robots. Autonomous Robots 20(2), 165–177 (2006)

    Article  Google Scholar 

  11. Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R.: Distributed construction by mobile robots with enhanced building blocks. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA (May 2006)

    Google Scholar 

  12. Winfree, E.: Simulations of computing by self-assembly of DNA. Technical Report CS-TR:1998:22, California Institute of Technology, Pasadena, CA, USA (1998)

    Google Scholar 

  13. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology, Pasadena, CA, USA (June 1998)

    Google Scholar 

  14. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of STOC 2000, Portland, OR, USA, pp. 459–468 (May 2000)

    Google Scholar 

  15. Wang, H.: Proving theorems by pattern recognition. II. Bell System Technical J. 40, 1–42 (1961)

    Article  Google Scholar 

  16. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Reishus, D.: Design of a self-assembled memory circuit. In: Proceedings of the 5th Foundations of Nanoscience: Self-Assembled Architectures and Devices (FNANO 2008), Snowbird, UT, USA, pp. 239–246 (April 2008)

    Google Scholar 

  18. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)

    Article  Google Scholar 

  19. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., Moisset de Espanés, P., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of STOC 2002, Montreal, Quebec, Canada, pp. 23–32 (May 2002)

    Google Scholar 

  20. Adleman, L., Goel, A., Huang, M.D., Moisset de Espanés, P.: Running time and program size for self-assembled squares. In: Proceedings of STOC 2002, Montreal, Quebec, Canada, pp. 740–748 (May 2002)

    Google Scholar 

  21. Moisset de Espanés, P., Goel, A.: Toward minimum size self-assembled counters. Natural Computing 7(3), 317–334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, H.L.: Towards minimum tile self-assembled counters. In: Proceedings of the 5th Foundations of Nanoscience: Self-Assembled Architectures and Devices (FNANO 2008), Snowbird, UT, USA, pp. 218–223 (April 2008)

    Google Scholar 

  23. Etzion-Petruschka, Y., Harel, D., Myers, D.: On the solvability of domino snake problems. Theoretical Computer Science 131(2), 243–269 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.Y., Moisset de Espanés, P., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM J. on Computing 34(6), 1493–1515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kao, M.Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), Miami, FL, USA, pp. 571–580 (January 2006)

    Google Scholar 

  26. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. on Computing 36(6), 1544–1569 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Brun, Y., Reishus, D.: Path finding in the tile assembly model. Theoretical Computer Science (in press, 2008)

    Google Scholar 

  28. Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592 (2005)

    Article  Google Scholar 

  29. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. JACS 126(43), 13924–13925 (2004)

    Article  Google Scholar 

  30. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13), 3211–3220 (1993)

    Article  Google Scholar 

  31. Reishus, D., Shaw, B., Brun, Y., Chelyapov, N., Adleman, L.: Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures. JACS 127(50), 17590–17591 (2005)

    Article  Google Scholar 

  32. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), 424 (2004)

    Article  Google Scholar 

  33. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Proceedings of FOCS 2002, Madison, WI, USA, vol. 2943, pp. 126–144 (June 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brun, Y., Reishus, D. (2009). Connecting the Dots: Molecular Machinery for Distributed Robotics. In: Goel, A., Simmel, F.C., SosĂ­k, P. (eds) DNA Computing. DNA 2008. Lecture Notes in Computer Science, vol 5347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03076-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03076-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03075-8

  • Online ISBN: 978-3-642-03076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics