Skip to main content

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits

(Extended Abstract)

  • Conference paper
Book cover DNA Computing (DNA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5347))

Included in the following conference series:

Abstract

The prospects of programming molecular systems to perform complex autonomous tasks has motivated research into the design of synthetic biochemical circuits. Of particular interest to us are cell-free nucleic acid systems that exploit non-covalent hybridization and strand displacement reactions to create cascades that implement digital and analog circuits. To date, circuits involving at most tens of gates have been demonstrated experimentally. Here, we propose a DNA catalytic gate architecture that appears suitable for practical synthesis of large-scale circuits involving possibly thousands of gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tang, J., Breaker, R.R.: Rational design of allosteric ribozymes. Chem. Biol. 4, 453–459 (1997)

    Article  Google Scholar 

  2. Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills Jr., A.P., Blakey, M.I., Simmel, F.C.: DNA fuel for free-running nanomachines. Physical Review Letters 90(11), 118102–118104 (2003)

    Article  Google Scholar 

  3. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

  4. Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates. Journal of the American Chemical Society 124, 3555–3561 (2002)

    Article  Google Scholar 

  5. Hagiya, M., Yaegashi, S., Takahashi, K.: Computing with hairpins and secondary structures of DNA. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology: Science and Computation, pp. 293–308. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)

    Article  Google Scholar 

  7. Penchovsky, R., Breaker, R.R.: Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat. Biotechnol. 23(11), 1424–1433 (2005)

    Article  Google Scholar 

  8. Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B.L., Stefanovic, D., Stojanovic, M.N.: Medium scale integration of molecular logic gates in an automaton. Nano Letters 6, 2598–2603 (2006)

    Article  Google Scholar 

  9. Yashin, R., Rudchenko, S., Stojanovic, M.N.: Networking particles over distance using oligonucleotide-based devices. Journal of the American Chemical Society 129, 15581–15583 (2007)

    Article  Google Scholar 

  10. Seeman, N.C.: An overview of structural DNA nanotechnology. Mol. Biotechnol. 37, 246–257 (2007)

    Article  Google Scholar 

  11. Bath, J., Turberfield, A.J.: DNA nanomachines. Nature Nanotechnology 2, 275–284 (2007)

    Article  Google Scholar 

  12. Gartner, Z.J., Liu, D.R.: The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. Journal of the American Chemical Society 123, 6961–6963 (2001)

    Article  Google Scholar 

  13. Gothelf, K.V., LaBean, T.H.: DNA-programmed assembly of nanostructures. Organic & Biomolecular Chemistry 3, 4023–4037 (2005)

    Article  Google Scholar 

  14. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  15. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  16. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008)

    Article  Google Scholar 

  17. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society (part B) 237, 37–72 (1953)

    Article  MathSciNet  Google Scholar 

  18. Zhabotinsky, A.M.: A history of chemical oscillations and waves. Chaos 4, 379–386 (1991)

    Article  Google Scholar 

  19. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications of the ACM 43, 74–82 (2000)

    Article  Google Scholar 

  20. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange (in preparation)

    Google Scholar 

  21. Yurke, B., Mills Jr., A.P.: Using DNA to power nanostructures. Genetic Programming and Evolvable Machines 4, 111–122 (2003)

    Article  Google Scholar 

  22. Dirks, R.M.: Analysis, design, and construction of nucleic acid devices. PhD thesis, California Institute of Technology (2005)

    Google Scholar 

  23. Bois, J.S.: Analysis of interacting nucleic acids in dilute solutions. PhD thesis, California Institute of Technology (2007)

    Google Scholar 

  24. Shannon, C.E.: A symbolic analysis of relay and switching circuits. Technical Report Master’s Thesis, Massachussetts Institute of Technology (1940)

    Google Scholar 

  25. Qian, L., Wang, Y., Zhang, Z., Zhao, J., Pan, D., Zhang, Y., Liu, Q., Fan, C., Hu, J., He, L.: Analogic china map constructed by DNA. Chinese Science Bulletin 51, 2973–2976 (2006)

    Article  Google Scholar 

  26. Douglas, S.M., Chou, J.J., Shih, W.M.: DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Nat. Acad. Sci. USA 104, 6644–6648 (2007)

    Article  Google Scholar 

  27. Thomas, D.E., Moorby, P.R.: The Verilog Hardware Description Language. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  28. Golze, U.: VLSI Chip Design with the Hardware Description Language VERILOG. Springer, Heidelberg (1996)

    Book  Google Scholar 

  29. Shahdad, M., Lipsett, R., Marschner, E., Sheehan, K., Cohen, H., Waxman, R., Ackley, D.: VHSIC hardware description language. IEEE Computer 18, 94–103 (1985)

    Article  Google Scholar 

  30. Brenneman, A., Condon, A.: Strand design for biomolecular computation. Theor. Comput. Sci. 287, 39–58 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bishop, M.A., D’Yachkov, A.G., Macula, A.J., Renz, T.E., Rykov, V.V.: Free energy gap and statistical thermodynamic fidelity of DNA codes. Journal of Computational Biology 14, 1088–1104 (2007)

    Article  MathSciNet  Google Scholar 

  32. Mir, K.U.: A restricted genetic alphabet for DNA computing. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS, vol. 44, pp. 243–246. American Mathematical Society, Providence (1998)

    Google Scholar 

  33. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.M.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296, 499–502 (2002)

    Article  Google Scholar 

  34. Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: RNA solutions to chess problems. Proc. Nat. Acad. Sci. USA 97(3), 1385–1389 (2000)

    Article  Google Scholar 

  35. Panyutin, I.G., Hsieh, P.: Formation of a single base mismatch impedes spontaneous DNA branch migration. Journal of Molecular Biology 230, 413–424 (1993)

    Article  Google Scholar 

  36. Panyutin, I.G., Hsieh, P.: Kinetics of spontaneous DNA branch migration. Proc. Nat. Acad. Sci. USA 91, 2021–2025 (1994)

    Article  Google Scholar 

  37. Kao, M.-Y., Sanghi, M., Schweller, R.T.: Randomized fast design of short DNA words. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1275–1286. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  38. King, O.D.: Bounds for DNA codes with constant GC-content. Electronic Journal of Combinatorics 10, R33 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Agilent Technologies. SurePrint technology (web page), http://www.chem.agilent.com/scripts/generic.asp?lpage=557

  40. Agilent Technologies. Multi-pack gene expression microarrays (web page), http://www.chem.agilent.com/scripts/generic.asp?lpage=51683

  41. NimbleGen Systems, Inc. Array synthesis (web page), http://www.nimblegen.com/technology/manufacture.html

  42. Kohne, D.E., Levison, S.A., Byers, M.J.: Room temperature method for increasing the rate of DNA reassociation by many thousandfold: The phenol emulsion reassociation technique. Biochemistry 16, 5329–5341 (1977)

    Article  Google Scholar 

  43. Goldar, A., Sikorav, J.-L.: DNA renaturation at the water-phenol interface. Eur. Phys. J. E. 14, 211–239 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qian, L., Winfree, E. (2009). A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits. In: Goel, A., Simmel, F.C., Sosík, P. (eds) DNA Computing. DNA 2008. Lecture Notes in Computer Science, vol 5347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03076-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03076-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03075-8

  • Online ISBN: 978-3-642-03076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics