Skip to main content

Improved Bounds for Flow Shop Scheduling

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5555))

Abstract

We resolve an open question raised by Feige & Scheideler by showing that the best known approximation algorithm for flow shops is essentially tight with respect to the used lower bound on the optimal makespan. We also obtain a nearly tight hardness result for the general version of flow shops, where jobs are not required to be processed on each machine.

Similar results hold true when the objective is to minimize the sum of completion times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, J.: An algorithmic approach to the lovasz local lemma. Random Structures and Algorithms 2(4), 343–365 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, B., Potts, C., Woeginger, G.: A review of machine scheduling: Complexity, algorithms and approximability. Handbook of Combinatorial Optimization 3, 21–169 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Czumaj, A., Scheideler, C.: A new algorithm approach to the general lovász local lemma with applications to scheduling and satisfiability problems (extended abstract). In: STOC, pp. 38–47 (2000)

    Google Scholar 

  4. Feige, U., Scheideler, C.: Improved bounds for acyclic job shop scheduling. Combinatorica 22(3), 361–399 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldberg, L., Paterson, M., Srinivasan, A., Sweedyk, E.: Better approximation guarantees for job-shop scheduling. SIAM Journal on Discrete Mathematics 14(1), 67–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Graham, R., Lawler, E., Lenstra, J., Kan, A.R.: Optimization and approximation in deterministic sequencing and scheduling: A survey. In: Annals of Discrete Mathematics, vol. 5, pp. 287–326. North-Holland, Amsterdam (1979)

    Google Scholar 

  7. Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for scheduling problems with minsum criteria. INFORMS Journal on Computing 13(2), 157–168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khot, S.: Improved inapproximability results for maxclique, chromatic number and approximate graph coloring. In: FOCS, pp. 600–609 (2001)

    Google Scholar 

  9. Lawler, E., Lenstra, J., Kan, A.R., Shmoys, D.: Sequencing and scheduling: Algorithms and complexity. Handbook in Operations Research and Management Science 4, 445–522 (1993)

    Article  Google Scholar 

  10. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling in O(congestion + dilation) steps. Combinatorica 14(2), 167–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leighton, F.T., Maggs, B.M., Richa, A.W.: Fast algorithms for finding O(congestion + dilation) packet routing schedules. Combinatorica 19, 375–401 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mastrolilli, M., Svensson, O.: (Acyclic) jobshops are hard to approximate. In: FOCS, pp. 583–592 (2008)

    Google Scholar 

  13. Nagarajan, V., Sviridenko, M.: Tight bounds for permutation flow shop scheduling. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 154–168. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Potts, C., Shmoys, D., Williamson, D.: Permutation vs. nonpermutation flow shop schedules. Operations Research Letters 10, 281–284 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Queyranne, M., Sviridenko, M.: Approximation algorithms for shop scheduling problems with minsum objective. Journal of Scheduling 5(4), 287–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for machine scheduling: ten open problems. Journal of Scheduling 2(5), 203–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shmoys, D., Stein, C., Wein, J.: Improved approximation algorithms for shop scheduling problems. SIAM Journal on Computing 23, 617–632 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Williamson, D., Hall, L., Hoogeveen, J., Hurkens, C., Lenstra, J., Sevastianov, S., Shmoys, D.: Short shop schedules. Operations Research 45, 288–294 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mastrolilli, M., Svensson, O. (2009). Improved Bounds for Flow Shop Scheduling. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02927-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02927-1_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02926-4

  • Online ISBN: 978-3-642-02927-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics