Skip to main content

Towards a Study of Low-Complexity Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5555))

Abstract

We propose the study of graphs that are defined by low-complexity distributed and deterministic agents. We suggest that this viewpoint may help introduce the element of individual choice in models of large scale social networks. This viewpoint may also provide interesting new classes of graphs for which to design algorithms.

We focus largely on the case where the “low complexity” computation is AC 0. We show that this is already a rich class of graphs that includes examples of lossless expanders and power-law graphs. We give evidence that even such low complexity graphs present a formidable challenge to algorithms designers. On the positive side, we show that many algorithms from property testing and data sketching can be adapted to give meaningful results for low-complexity graphs.

Supported by NSF grants 0830673, 0832797, 528414.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1(2) (2003)

    Google Scholar 

  2. Hopcroft, J.: Personal communication (2008)

    Google Scholar 

  3. Galperin, H., Wigderson, A.: Succinct representations of graphs. Inf. Control 56(3), 183–198 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arora, S., Barak, B.: Computational Complexity: A modern approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  7. Nickel, C.L.M.: Random dot product graphs: A model for social networks. PhD thesis, Johns Hopkins University (2008)

    Google Scholar 

  8. Young, S.J., Scheinerman, E.R.: Random dot product graph models for social networks. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 138–149. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Ajtai, M.: \(\sigma_1^1\) formulae on finite structures. Annals of Pure Appl. Logic 24 (1983)

    Google Scholar 

  10. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory 17(1), 13–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Viola, E.: On approximate majority and probabilistic time. In: IEEE Conference on Computational Complexity, pp. 155–168 (2007)

    Google Scholar 

  12. Hastad, J.: Almost optimal lower bounds for small depth circuits. In: Randomness and Computation, pp. 6–20. JAI Press (1989)

    Google Scholar 

  13. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. AMS (43), 439–561 (2006)

    Google Scholar 

  14. Capalbo, M.R., Reingold, O., Vadhan, S.P., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: STOC, pp. 659–668 (2002)

    Google Scholar 

  15. Alon, N., Schwartz, O., Shapira, A.: An elementary construction of constant-degree expanders. In: SODA, pp. 454–458 (2007)

    Google Scholar 

  16. Reingold, O., Vadhan, S.P., Wigderson, A.: Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors. In: FOCS, pp. 3–13 (2000)

    Google Scholar 

  17. Mihail, M., Papadimitriou, C.H.: On the eigenvalue power law. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 254–262. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Babai, L., Fortnow, L., Lund, L.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1, 3–40 (1991); Prelim version FOCS 1990

    Google Scholar 

  19. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM 45(1), 70–122 (1998); Prelim version FOCS 1992

    Google Scholar 

  20. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998); Prelim version FOCS 1992

    Google Scholar 

  21. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. Journal of the ACM 43(2), 268–292 (1996); Prelim version FOCS 1991

    Google Scholar 

  22. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Alon, N., de la Vega, W.F., Kannan, R., Karpinski, M.: Random sampling and approximation of max-csps. J. Comput. Syst. Sci. 67(2), 212–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization of the testable graph properties: it’s all about regularity. In: STOC, pp. 251–260 (2006)

    Google Scholar 

  26. Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse graphs is testable. In: STOC, pp. 393–402 (2008)

    Google Scholar 

  27. Frieze, A.M., Kannan, R., Vempala, S.: Fast monte-carlo algorithms for finding low-rank approximations. In: FOCS, pp. 370–378 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arora, S., Steurer, D., Wigderson, A. (2009). Towards a Study of Low-Complexity Graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02927-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02927-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02926-4

  • Online ISBN: 978-3-642-02927-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics