Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5584))

Abstract

One of the most important structural parameters of graphs is treewidth, a measure for the “tree-likeness” and thus in many cases an indicator for the hardness of problem instances. The smaller the treewidth, the closer the graph is to a tree and the more efficiently the underlying instance often can be solved. However, computing the treewidth of a graph is NP-hard in general. In this paper we propose an encoding of the decision problem whether the treewidth of a given graph is at most k into the propositional satisfiability problem. The resulting SAT instance can then be fed to a SAT solver. In this way we are able to improve the known bounds on the treewidth of several benchmark graphs from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8(2), 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bachoore, E.H., Bodlaender, H.L.: New upper bound heuristics for treewidth. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 216–227. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bachoore, E.H., Bodlaender, H.L.: A branch and bound algorithm for exact, upper, and lower bounds on treewidth. Technical Report UU-CS-2006-012, Department of Information and Computing Sciences, Utrecht University (2006)

    Google Scholar 

  4. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bodlaender, H.L., Grigoriev, A., Arie, M.C., Koster, A.: Treewidth lower bounds with brambles. Algorithmica 51, 81–98 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. Journal of Graph Algorithms and Applications (JGAA) 10(1), 5–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. van den Broek, J.-W., Bodlaender, H.L.: TreewidthLIB (March 2009), http://people.cs.uu.nl/hansb/treewidthlib/

  8. Clautiaux, F., Carlier, J., Moukrim, A., Nègre, S.: New lower and upper bounds for graph treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 70–80. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, ch. 5, pp. 193–242. Elsevier, Amsterdam (1990)

    Google Scholar 

  10. Dechter, R.: Tractable structures for constraint satisfaction problems. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 7, pp. 209–244. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  11. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proc. of the 20th Conference on Uncertainty in Artificial Intelligence (UAI 2004). ACM International Conference Proceeding Series, vol. 70, pp. 201–208. AUAI Press (2004)

    Google Scholar 

  12. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational experiments. Electronic Notes in Discrete Mathematics 8, 54–57 (2001); Extended version available as Technical Report ZIB-Report 01-38, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

    Article  MathSciNet  MATH  Google Scholar 

  13. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Samer, M., Veith, H. (2009). Encoding Treewidth into SAT. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02777-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02776-5

  • Online ISBN: 978-3-642-02777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics