Skip to main content

Topology Preserving Neural Networks for Peptide Design in Drug Discovery

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5488))

Abstract

We describe a construction method and a training procedure for a topology preserving neural network (TPNN) in order to model the sequence-activity relation of peptides. The building blocks of a TPNN are single cells (neurons) which correspond one-to-one to the amino acids of the peptide. The cells have adaptive internal weights and the local interactions between cells govern the dynamics of the system and mimic the topology of the peptide chain. The TPNN can be trained by gradient descent techniques, which rely on the efficient calculation of the gradient by back-propagation. We show an example how TPNNs could be used for peptide design and optimization in drug discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65, 386–408 (1958)

    Article  CAS  PubMed  Google Scholar 

  2. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1969/1988) (expanded edn.)

    Google Scholar 

  3. Fukushima, K.: Cognitron: A self-organizing multilayered neural network. Biological Cybernetics 20(3-4), 121–136 (1975)

    Article  CAS  PubMed  Google Scholar 

  4. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)

    Article  CAS  PubMed  Google Scholar 

  5. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)

    Article  Google Scholar 

  6. Chua, L., Yang, L.: Cellular neural networks: Theory. IEEE Trans. on Circuits and Systems 35, 1257–1272 (1988)

    Article  Google Scholar 

  7. Merkwirth, C., Lengauer, T.: Automatic generation of complementary descriptors with molecular graph networks. Journal of Chemical Information and Modeling 45(5), 1159–1168 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Ogorzałek, M., Merkwirth, C., Wichard, J.: Pattern recognition using finite-iteration cellular systems. In: Proceedings of the 9th International Workshop on Cellular Neural Networks and Their Applications, pp. 57–60 (2005)

    Google Scholar 

  9. Merkwirth, C., Ogorzałek, M.: Applying CNN to cheminformatics. In: Proceedings of the ISCAS, pp. 2918–2921 (2007)

    Google Scholar 

  10. Harrer, H., Nossek, J.: Discrete-time cellular neural networks. Int. J. Circuit Theory and Applications 20, 453–467 (1992)

    Article  Google Scholar 

  11. Merkwirth, C., Bröcker, J., Ogorzałek, M., Wichard, J.: Finite Iteration DT-CNN - New Design and Operation Principles. In: Proceedings of the ISCAS, Vancouver, Canada, vol. 5, pp. 504–507 (2004)

    Google Scholar 

  12. Weekes, D., Fogel, G.: Evolutionary optimization, backpropagation, and data preparation issues in QSAR modeling of HIV inhibition by HEPT derivatives. Biosystems 72(1-2), 149–158 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Terfloth, L., Gasteiger, J.: Neural networks and genetic algorithms in drug design. Drug Discovery Today 6(suppl. 2), 102–108 (2001)

    Article  Google Scholar 

  14. Schneider, G., Wrede, P.: The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: De novo design of an idealized leader peptidase cleavage site. Biophysical Journal 66, 335–344 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Darius, F., Rojas, R.: Simulated molecular evolution or computer generated artifacts? Biophysical Journal 67, 2120–2122 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schneider, G., Schrodl, W., Wallukat, G., Müller, J., Nissen, E., Ronspeck, W., Wrede, P., Kunze, R.: Peptide design by artificial neural networks and computer-based evolutionary search. Proceedings of the National Academy of Sciences 95(21), 12179–12184 (1998)

    Article  CAS  Google Scholar 

  17. Kamphausen, S., Höltge, N., Wirsching, F., Morys-Wortmann, C., Riester, D., Goetz, R., Thürk, M., Schwienhorst, A.: Genetic algorithm for the design of molecules with desired properties. Journal of Computer-Aided Molecular Design 16(8-9), 551–567 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. LeCun, Y., Bottou, L., Orr, G., Müller, K.: Efficient BackProp. In: Orr, G., Müller, K. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Wichard, J., Ogorzałek, M., Merkwirth, C., Bröcker, J.: Finite iteration DT-CNN with stationary templates. In: Proceedings of the 8th IEEE International Workshop on Cellular Neural Networks and their Applications, Budapest, Hungary, pp. 459–464 (2004)

    Google Scholar 

  20. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1999)

    Google Scholar 

  21. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)

    Article  Google Scholar 

  22. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4, 1–58 (1992)

    Article  Google Scholar 

  23. Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for hybrid neural networks. In: Mammone, R.J. (ed.) Neural Networks for Speech and Image Processing, pp. 126–142. Chapman-Hall, Boca Raton (1993)

    Google Scholar 

  24. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley, New York (1966)

    Google Scholar 

  25. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann Verlag, Stuttgart (1973) (in German)

    Google Scholar 

  26. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1975)

    Google Scholar 

  27. Koza, J.R.: Genetic programming: On the programming of computers by means of natural selection. MIT Press, Cambridge (1992)

    Google Scholar 

  28. Schneider, G., Wrede, P.: Artificial neural networks for computer-based molecular design. Progress in Biophysics and Molecular Biology 70(3), 175–222 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wichard, J.D., Bandholtz, S., Grötzinger, C., Kühne, R. (2009). Topology Preserving Neural Networks for Peptide Design in Drug Discovery. In: Masulli, F., Tagliaferri, R., Verkhivker, G.M. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2008. Lecture Notes in Computer Science(), vol 5488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02504-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02504-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02503-7

  • Online ISBN: 978-3-642-02504-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics