Skip to main content

Image-to-Physical Registration for Image-Guided Interventions Using 3-D Ultrasound and an Ultrasound Imaging Model

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Abstract

We present a technique for automatic intensity-based image-to-physical registration of a 3-D segmentation for image-guided interventions. The registration aligns the segmentation with tracked and calibrated 3-D ultrasound (US) images of the target region. The technique uses a probabilistic framework and explicitly incorporates a model of the US image acquisition process. The rigid body registration parameters are varied to maximise the likelihood that the real US image(s) were formed using the US imaging model from the probe transducer position. The proposed technique is validated on images segmented from cardiac magnetic resonance imaging (MRI) data and 3-D US images acquired from 3 volunteers and 1 patient. We show that the accuracy of the algorithm is 2.6-4.2mm and the capture range is 9-18mm. The proposed technique has the potential to provide accurate image-to-physical registrations for a range of image guidance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roche, A., Pennec, X., Malandain, G., Ayache, N.: Rigid registration of 3D ultrasound with MR images: A new approach combining intensity and gradient information. IEEE Transactions on Medical Imaging 20, 1038–1049 (2001)

    Article  Google Scholar 

  2. Leroy, A., Mozer, P., Payan, Y., Troccaz, J.: Rigid registration of freehand 3D ultrasound and CT-scan kidney images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 837–844. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Penney, G.P., Blackall, J.M., Hamady, M.S., Sabharwal, T., Adam, A., Hawkes, D.J.: Registration of freehand 3D ultrasound and magnetic resonance liver images. Medical Image Analysis 8, 81–91 (2004)

    Article  Google Scholar 

  4. Huang, X., Hill, N.A., Ren, J., Peters, T.M.: Rapid registration of multimodal images using a reduced number of voxels. In: Proceedings SPIE Medical Imaging, vol. 6141 (2006)

    Google Scholar 

  5. Wein, W., Brunke, S., Khamene, A., Callstrom, M.R., Navab, N.: Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Medical Image Analysis 12, 577–585 (2008)

    Article  Google Scholar 

  6. Cardinal, M.R., Meunier, J., Soulez, G., Maurice, R.L., Therasse, E., Cloutier, G.: Intravascular ultrasound image segmentation: A three-dimensional fast-marching method based on gray level distributions. IEEE Transactions on Medical Imaging 25(5), 590–601 (2006)

    Article  Google Scholar 

  7. Shams, R., Hartley, R., Navab, N.: Real-time simulation of medical ultrasound from CT images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 734–741. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Zhuang, X., Hawkes, D.J., Crum, W.R., Boubertakh, R., Uribe, S., Atkinson, D., Batchelor, P., Schaeffter, T., Razavi, R., Hill, D.L.G.: Robust registration between cardiac MRI images and atlas for segmentation propagation. In: Proceedings SPIE Medical Imaging (2008)

    Google Scholar 

  9. Maurer Jr., C., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 265–269 (2003)

    Article  Google Scholar 

  10. Webb, S. (ed.): The Physics of Medical Imaging. Institute of Physics Publishing (1988)

    Google Scholar 

  11. Sanches, J.M., Marques, J.S.: Compensation of log-compressed images for 3-d ultrasound. Ultrasound in Medicine and Biology 29(2), 239–253 (2003)

    Article  Google Scholar 

  12. Dias, J.M.B., Leitão, J.M.N.: Wall position and thickness estimation from sequences of echocardiographic images. IEEE Transactions on Medical Imaging 15(1), 25–38 (1996)

    Article  Google Scholar 

  13. Nillesen, M.M., Lopata, R.G.P., Gerrits, I.H., Kapusta, L., Thussen, J.M., de Korte, C.L.: Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images. Ultrasound in Medicine and Biology 34(4), 674–680 (2008)

    Article  Google Scholar 

  14. Tao, Z., Tagare, H.D., Beaty, J.D.: Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Transactions on Medical Imaging 25(11), 1483–1492 (2006)

    Article  Google Scholar 

  15. Goldstein, A., Madrazo, B.: Slice-thickness artifacts in gray-scale ultrasound. J. Clin. Ultrasound 9, 365–375 (1981)

    Article  Google Scholar 

  16. Feng, D.D.: Biomedical Information Technology. Academic Press, London (2008)

    Google Scholar 

  17. Ma, Y.L., Rhode, K.S., Gao, G., King, A.P., Chinchapatnam, P., Schaeffter, T., Hawkes, D.J., Razavi, R., Penney, G.P.: Ultrasound calibration using intensity-based image registration: For application in cardiac catheterization procedures. In: Proceedings SPIE Medical Imaging (2008)

    Google Scholar 

  18. Grau, V., Becher, H., Noble, A.: Registration of multiview real-time 3-D echocardiographic sequences. IEEE Transactions on Medical Imaging 26(9), 1154–1165 (2007)

    Article  Google Scholar 

  19. Rhode, K.S., Hill, D.L.G., Edwards, P.J., Hipwell, J., Rueckert, D., Sanchez-Ortiz, G., Hegde, S., Rahunathan, V., Razavi, R.: Registration and tracking to integrate X-ray and MR images in an XMR facility. IEEE Transactions on Medical Imaging 22(11), 1369–1378 (2003)

    Article  Google Scholar 

  20. Ma, Y.L., Rhode, K.S., King, A.P., Cauldfield, D., Cooklin, M., Razavi, R., Penney, G.P.: Echocardiography to magnetic resonance image registration for use in image-guided electrophysiology procedures. In: Proceedings SPIE Medical Imaging (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

King, A.P. et al. (2009). Image-to-Physical Registration for Image-Guided Interventions Using 3-D Ultrasound and an Ultrasound Imaging Model. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics