Skip to main content

Self Organized Dynamic Tree Neural Network

  • Conference paper
Book cover Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Included in the following conference series:

Abstract

Cluster analysis is a technique used in a variety of fields. There are currently various algorithms used for grouping elements that are based on different methods including partitional, hierarchical, density studies, probabilistic, etc. This article will present the SODTNN, which can perform clustering by integrating hierarchical and density-based methods. The network incorporates the behavior of self-organizing maps and does not specify the number of existing clusters in order to create the various groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furao, S., Ogura, T., Hasegawa, O.: An enhanced self-organizing incremental neural network for online unsupervised learning. Neural Networks 20, 893–903 (2007)

    Article  MATH  Google Scholar 

  2. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics, 59–69 (1982)

    Google Scholar 

  3. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632 (1995)

    Google Scholar 

  4. Martinetz, T., Schulten, K.: A neural-gas network learns topologies. Artificial Neural Networks 1, 397–402 (1991)

    Google Scholar 

  5. Carpenter, G.A., Grossberg, S.: The ART of adaptive pattern recognition by a self-organizing neural network. IEEE Trans. Computer, 77–88 (1987)

    Google Scholar 

  6. Shen, F.: An algorithm for incremental unsupervised learning and topology representation. Ph.D. thesis. Tokyo Institute of Technology (2006)

    Google Scholar 

  7. Saitou, N., Nie, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. 4, 406–425 (1987)

    Google Scholar 

  8. Xu, L.: Bayesian Ying–Yang machine, clustering and number of clusters. Pattern Recognition Letters 18(11-13), 1167–1178 (1997)

    Article  Google Scholar 

  9. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Book  MATH  Google Scholar 

  10. Corchado, J.M., De Paz, J.F., Rodríguez, S., Bajo, J.: Model of experts for decision support in the diagnosis of leukemia patients. Artificial Intelligence in Medicine (in Press)

    Google Scholar 

  11. Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Applied Statistics 28, 100–108 (1979)

    Article  MATH  Google Scholar 

  12. Campos, R., Ricardo, M.: A fast algorithm for computing minimum routing cost spanning trees 52(17), 3229–3247 (2008)

    Google Scholar 

  13. Bajo, J., De Paz, J.F., De Paz, Y., Corchado, J.M.: Integrating case-based planning and RPTW neural networks to construct an intelligent environment for health care. Expert Systems with Applications 36(3) (2009)

    Google Scholar 

  14. UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/

  15. Patricio, M.A., Carbó, J., Pérez, O., García, J., Molina, J.M.: Multi-Agent Framework in Visual Sensor Networks. EURASIP Journal on Advances in Signal Processing, special issue on Visual Sensor Networks, 21 (2007)

    Google Scholar 

  16. Carbó, J., Molina, J.M., Dávila, J.: Fuzzy Referral based Cooperation in Social Networks of Agents. AI Communications 18(1), 1–13 (2005)

    MathSciNet  MATH  Google Scholar 

  17. García, J., Berlanga, A., Molina, J.M., Casar, J.R.: Methods for Operations Planning in Airport Decision Support Systems. Applied Intelligence 22(3), 183–206 (2005)

    Article  MATH  Google Scholar 

  18. Pavón, J., Arroyo, M., Hassan, S., Sansores, C.: Agent-based modelling and simulation for the analysis of social patterns. Pattern Recognition Letters 29, 1039–1048 (2008)

    Article  Google Scholar 

  19. Pavón, J., Gómez, J., Fernández, A., Valencia, J.: Development of intelligent multi-sensor surveillance systems with agents. Robotics and Autonomous Systems 55(12), 892–903 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.M., López, V. (2009). Self Organized Dynamic Tree Neural Network. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics