Skip to main content

Cryptographic Functions from Worst-Case Complexity Assumptions

  • Chapter
  • First Online:
Book cover The LLL Algorithm

Part of the book series: Information Security and Cryptography ((ISC))

Abstract

Lattice problems have been suggested as a potential source of computational hardness to be used in the construction of cryptographic functions that are provably hard to break. A remarkable feature of lattice-based cryptographic functions is that they can be proved secure (that is, hard to break on the average) based on the assumption that the underlying lattice problems are computationally hard in the worst-case. In this paper we give a survey of the constructions and proof techniques used in this area, explain the importance of basing cryptographic functions on the worst-case complexity of lattice problems, and discuss how this affects the traditional approach to cryptanalysis based on random challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenstra, A.K., Lenstra, Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 513–534 (1982)

    Google Scholar 

  2. Brickell, E.F., Odlyzko, A.M.: Cryptanalysis: A survey of recent results. In: G.J. Simmons (ed.) Contemporary Cryptology, chap. 10, pp. 501–540. IEEE Press (1991)

    Google Scholar 

  3. Joux, A., Stern, J.: Lattice reduction: A toolbox for the cryptanalyst. Journal of Cryptology 11(3), 161–185 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Nguyen, P., Stern, J.: The two faces of lattices in cryptology. In: Proceedings of CaLC ’01, LNCS, vol. 2146, pp. 146–180. Springer (2001)

    Google Scholar 

  5. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical programming 66(1–3), 181–199 (1994). Preliminary version in FCT 1991

    Google Scholar 

  6. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science 53(2–3), 201–224 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Schnorr, C.P.: A more efficient algorithm for lattice basis reduction. Journal of Algorithms 9(1), 47–62 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schnorr, C.P.: Fast LLL-type lattice reduction. Information and Computation 204(1), 1–25 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of STOC ’01, pp. 266–275. ACM (2001)

    Google Scholar 

  10. Kumar, R., Sivakumar, D.: On polynomial-factor approximations to the shortest lattice vector length. SIAM Journal on Discrete Mathematics 16(3), 422–425 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nguyen, P., Stehlé, D.: Floating-point LLL revisited. In: Proceedings of EUROCRYPT ’05, LNCS, vol. 3494, pp. 215–233. Springer (2005)

    Google Scholar 

  12. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within mordell’s inequality. In: Proceedings of STOC ’08, pp. 207–216. ACM (2008)

    Google Scholar 

  13. Ajtai, M.: Generating hard instances of lattice problems. Complexity of Computations and Proofs, Quaderni di Matematica 13, 1–32 (2004). Preliminary version in STOC 1996

    Google Scholar 

  14. Cai, J.Y., Nerurkar, A.P.: An improved worst-case to average-case connection for lattice problems (extended abstract). In: Proceedings of FOCS ’97, pp. 468–477. IEEE (1997)

    Google Scholar 

  15. Micciancio, D.: Almost perfect lattices, the covering radius problem, and applications to Ajtai’s connection factor. SIAM Journal on Computing 34(1), 118–169 (2004). Preliminary version in STOC 2002.

    Google Scholar 

  16. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measure. SIAM Journal on Computing 37(1), 267–302 (2007). Preliminary version in FOCS 2004

    Google Scholar 

  17. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Computational Complexity 16(4), 365–411 (2007). Preliminary version in FOCS 2002

    Google Scholar 

  18. Ajtai, M.: Representing hard lattices with O(n log n) bits. In: Proceedings of STOC ’05,pp. 94–103. ACM (2005)

    Google Scholar 

  19. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Proceedings of ICALP ’06, LNCS, vol. 4052, pp. 144–155. Springer (2006)

    Google Scholar 

  20. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Proceedings of TCC ’06, LNCS, vol. 3876, pp. 145–166. Springer (2006)

    Google Scholar 

  21. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Swifft: a modest proposal for fft hashing. In: Proceedings of FSE ’08, LNCS, vol. 5086, pp. 54–72. Springer (2008)

    Google Scholar 

  22. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proceedings of STOC ’97, pp. 284–293. ACM (1997)

    Google Scholar 

  23. Regev, O.: New lattice based cryptographic constructions. Journal of the ACM 51(6), 899–942 (2004). Preliminary version in STOC 2003

    Google Scholar 

  24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of STOC ’05, pp. 84–93. ACM (2005)

    Google Scholar 

  25. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of STOC ’08, pp. 187–196. ACM (2008)

    Google Scholar 

  26. Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers: lattice problems and more. In: Proceedings of CRYPTO ’03, LNCS, vol. 2729, pp. 282–298. Springer (2003)

    Google Scholar 

  27. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Proceedings of PKC ’08, no. 4939 in LNCS, pp. 162–179. Springer (2008)

    Google Scholar 

  28. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In: Proceedings of TCC ’08, LNCS, vol. 4948, pp. 37–54. Springer (2008)

    Google Scholar 

  29. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of STOC ’08, pp. 197–206. ACM (2008)

    Google Scholar 

  30. Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs for lattice problems. In: Proceedings of CRYPTO ’08, LNCS, vol. 5157, pp. 536–553. Springer (2008)

    Google Scholar 

  31. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Proceedings of CRYPTO ’08, LNCS, vol. 5157, pp. 554–571. Springer (2008)

    Google Scholar 

  32. Regev, O.: On the complexity of lattice problems with polynomial approximation factors. In: this volume (2008)

    Google Scholar 

  33. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspective, The Kluwer International Series in Engineering and Computer Science, vol. 671. Kluwer Academic Publishers (2002)

    Google Scholar 

  34. Goldreich, O., Micciancio, D., Safra, S., Seifert, J.P.: Approximating shortest lattice vectors is not harder than approximating closest lattice vectors. Information Processing Letters 71(2), 55–61 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  35. Babai, L.: On Lovasz’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ajtai, M.: The worst-case behavior of Schnorr’s algorithm approximating the shortest nonzero vector in a lattice. In: Proceedings of STOC ’03, pp. 396–406. ACM (2003)

    Google Scholar 

  37. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring based public key cryptosystem. In: Proceedings of ANTS-III, LNCS, vol. 1423, pp. 267–288. Springer (1998)

    Google Scholar 

  38. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984). Preliminary version in Proc. of STOC 1982

    Google Scholar 

  39. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proceedings of STOC ’89, pp. 44–61. ACM (1989)

    Google Scholar 

  40. Cai, J.Y.: A relation of primal-dual lattices and the complexity of the shortest lattice vector problem. Theoretical Computer Science 207(1), 105–116 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Goldreich, O., Goldwasser, S., Halevi, S.: Eliminating decryption errors in the Ajtai-Dwork cryptosystem. In: Proceedings of CRYPTO ’97, LNCS, vol. 1294, pp. 105–111. Springer (1997)

    Google Scholar 

  42. Nguyen, P., Stehlé, D.: LLL on the average. In: Proceedings of ANTS-VII, LNCS, vol. 4076, pp. 238–256. Springer (2006)

    Google Scholar 

  43. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Proceedings of EUROCRYPT ’08, LNCS, vol. 4965, pp. 31–51. Springer (2008)

    Google Scholar 

  44. Schnorr, C.P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In: Proceedings of EUROCRYPT ’95, LNCS, vol. 921, pp. 1–12. Springer (1995)

    Google Scholar 

  45. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryptology 14(4), 255–293 (2001)

    MATH  MathSciNet  Google Scholar 

  46. Nguyen, P., Stern, J.: Cryptanalysis of the Ajtai-Dwork cryptosystem. In: Proceedings of CRYPTO ’98, LNCS, vol. 1462, pp. 223–242. Springer (1998)

    Google Scholar 

  47. Dinur, I.: Approximating SVP to within almost-polynomial factors is NP-hard. Theoretical Computer Science 285(1), 55–71 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  48. Regev, O., Rosen, R.: Lattice problems and norm embeddings. In: Proceedings of STOC ’06, pp. 447–456. ACM (2006)

    Google Scholar 

  49. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In: Proceedings of STOC ’07, pp. 469–477. ACM (2007)

    Google Scholar 

  50. Lovász, L., Scarf, H.: The generalized basis reduction algorithm. Mathematics of Operations Research 17(3), 754–764 (1992)

    Article  Google Scholar 

  51. Gama, N., Howgrave-Graham, N., Nguyen, P.: Symplectic lattice reduction and NTRU. In: Proceedings of EUROCRYPT ’06, LNCS, vol. 4004, pp. 233–253. Springer (2006)

    Google Scholar 

  52. Lyubashevsy, V., Micciancio, D., Peikert, C., Rosen, A.: Provably secure FFT hashing. In: 2nd NIST cryptographic hash workshop. Santa Barbara, CA, USA (2006)

    Google Scholar 

  53. Ajtai, M.: Random lattices and a conjectured 0-1 law about their polynomial time computable properties. In: Proceedings of FOCS ’02, pp. 733–742. IEEE (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF grant CCF-0634909. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Micciancio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Micciancio, D. (2009). Cryptographic Functions from Worst-Case Complexity Assumptions. In: Nguyen, P., Vallée, B. (eds) The LLL Algorithm. Information Security and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02295-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02295-1_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02294-4

  • Online ISBN: 978-3-642-02295-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics