Skip to main content

Lead Field Space Projection for Spatiotemporal Imaging of Independent Brain Activities

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5553))

Abstract

Magnetoencephalography and electroencephalography are non-invasive instruments that can record magnetic fields and scalp potentials, respectively, induced from neuronal activities. The recordings are superimposed signals contributed from the whole brain. Independent component analysis (ICA) can provide a way of decomposition by maximizing the mutual independence of separated components. Beyond the temporal profile and topography provided by ICA, this work aims to estimate and map the cortical source distribution for each component. The proposed method first constructs a source space using lead field vectors for vertices on the cortical surface. By projecting the specified components to this source space, our method provides the corresponding spatiotemporal maps for these independent brain activities. Experiments using simulated brain activities clearly demonstrate the effectiveness and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, T., Girolami, M., Bell, A., Sejnowski, T.: A Unifying Information-Theoretic Framework for Independent Component Analysis. Computers & Mathematics With Applications 39(11), 1–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Sejnowski, V.I.T.J.: Removing Electroencephalographic Artifacts by Blind Source Separation. Psychophysiology 37(2), 163–178 (2000)

    Article  Google Scholar 

  3. Kawakatsu, M.: Application of ICA to MEG Noise Reduction. In: 4th International Symposium of Independent Component Analysis and Blind Signal Separation (ICA 2003), pp. 535–541. Tokyo Denki University, Chiba, Japan (2003)

    Google Scholar 

  4. Cao, J., Murata, N., Amari, S., Cichocki, A., Takeda, T.: A Robust Approach to Independent Component Analysis of Signals with High-Level Noise Measurements. IEEE Transactions On Neural Networks 14(3), 631–645 (2003)

    Article  Google Scholar 

  5. Escudero, J., Hornero, R., Abasolo, D., Fernandez, A., Lopez-Coronado, M.: Artifact Removal in Magnetoencephalogram Background Activity with Independent Component Analysis. IEEE Transactions On Biomedical Engineering 54(11), 1965–1973 (2007)

    Article  Google Scholar 

  6. Mantini, D., Franciotti, R., Romani, G.L., Pizzella, V.: Improving MEG Source Localizations: An Automated Method for Complete Artifact Removal Based on Independent Component Analysis. NeuroImage 40(1), 160–173 (2008)

    Article  Google Scholar 

  7. Qin, L., Ding, L., He, B.: Motor Imagery Classification by Means of Source Analysis for Brain Computer Interface Applications. Journal of Neural Engineering 1(3), 135–141 (2004)

    Article  Google Scholar 

  8. Breun, P., Grosse-Wentrup, M., Utschick, W., Buss, M.: Robust MEG Source Localization of Event Related Potentials: Identifying Relevant Sources by Non-Gaussianity. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 394–403. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Tsai, A.C., Liou, M., Jung, T.P., Onton, J.A., Cheng, P.E., Huang, C.C., Duann, J.R., Makeig, S.: Mapping Single-Trial EEG Records on the Cortical Surface through a Spatiotemporal Modality. NeuroImage 32(1), 195–207 (2006)

    Article  Google Scholar 

  10. Mosher, J.C., Leahy, R.M., Lewis, P.S.: EEG and MEG: Forward Solutions for Inverse Methods. IEEE Trans. Biomed. Eng. 46(3), 245–259 (1999)

    Article  Google Scholar 

  11. Baillet, S., Mosher, J., Leahy, R.: Electromagnetic Brain Mapping. IEEE Signal Processing Magazine 18(6), 14–30 (2001)

    Article  Google Scholar 

  12. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction. NeuroImage 9(2), 179–194 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, H., Chen, YS., Chen, LF., Chen, TH., Chen, IT. (2009). Lead Field Space Projection for Spatiotemporal Imaging of Independent Brain Activities. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01513-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01513-7_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01512-0

  • Online ISBN: 978-3-642-01513-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics