Skip to main content

Computer Simulations of the Heart

  • Chapter
  • First Online:
Simula Research Laboratory
  • 796 Accesses

Abstract

Biomedical research has traditionally used two types of experimental techniques—in vivo experiments performed on living organisms and in vitro studies performed on tissue samples. A third technique called in silico experiments is emerging. As the name suggests, these experiments are performed on a computer, that is, in silicon. In this paper we will present a project that studies the heart using in silico experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. X. Cai, G. Lines, and A. Tveito. Parallel solution of the bidomain equations with high resolutions. Proceedings of the Parco03 Conference, Dresden, Germany. 2003.

    Google Scholar 

  2. R. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.

    Google Scholar 

  3. D. Adams. Propagation of depolarization and repolarization processes in the myocardium - an anisotropic model. IEEE Trans Biomed Eng, 38(2):133–141, 1991.

    Article  Google Scholar 

  4. R. L. Winslow, J. Rice, S. Jafri, E. Marban, and B. O’Rourke. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II, model studies. Circulation Research, 84:571–586, 1999.

    Google Scholar 

  5. G. T. Lines. Simulating the electrical activity of the heart: a bidomain model of the ventricles embedded in a torso. PhD thesis, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, 1999.

    Google Scholar 

  6. M. Potse, B. Dube, J. Richer, A. Vinet, and R. Gulrajani. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. Biomedical Engineering, IEEE Transactions on, 53(12):2425–2435, Dec. 2006.

    Article  Google Scholar 

  7. S. Linge, J. Sundnes, M. Hanslien, G. T. Lines, and A. Tveito. Numerical solution of the bidomain equations. Philosophical Transactions of the Royal Society A, 367(1895):1815–2118, 2009.

    Article  MathSciNet  Google Scholar 

  8. J. Keener and J. Sneyd. Mathematical Physiology. Springer-Verlag, 1998.

    Google Scholar 

  9. U. M. Ascher and L. R. Petzold. Compuer methods for ordinary differential equations and differential-algebraic equtions. SIAM, 1998.

    Google Scholar 

  10. J. Sundnes, G. T. Lines, and A. Tveito. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells. Mathematical Biosciences, 172:55–72, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Sundnes, G. Lines, K.-A. Mardal, and A. Tveito. Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity of the heart. Technical report, Simula Research Laboratory, Norway, 2002.

    Google Scholar 

  12. H. P. Langtangen. Computational Partial Differential Equations – Numerical Methods and Diffpack Programming. Springer-Verlag, 1999.

    Google Scholar 

  13. J. Legrice, B. Smaill, L. Chai, S. Edgar, J. Gavin, and P. Hunter. Laminar structure of the heart: ventricular myoctye arrangement and connective tissue architecture in the dog. Lam. Org. of Ventric. Myocar., pages 571–582, 1995.

    Google Scholar 

  14. The visible human project.

    Google Scholar 

  15. H. Osnes, T. Thorvaldsen, S. Wall, J. Sundnes, and A. McCulloch. An operator splitting technique for integrating cardiac electro-mechanics. Submitted to journal, 2009.

    Google Scholar 

  16. T. Thorvaldsen, H. Osnes, and J. Sundnes. A mixed finite element formulation for a nonlinear, transversely isotropic material model for the cardiac tissue. Computer Methods in Biomechanics and Biomedical Engineering, 8(6):369–379, 2005.

    Article  Google Scholar 

  17. R. Kerckhoffs, S. Healy, T. Usyk, and A. McCulloch. Computational methods for cardiac electromechanics. Proceedings of the IEEE, 94(4):769–783, April 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lines, G.T., Sundnes, J. (2010). Computer Simulations of the Heart. In: Tveito, A., Bruaset, A., Lysne, O. (eds) Simula Research Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01156-6_20

Download citation

Publish with us

Policies and ethics