Skip to main content

The Swiss-Knife RFID Distance Bounding Protocol

  • Conference paper
Information Security and Cryptology – ICISC 2008 (ICISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5461))

Included in the following conference series:

Abstract

Relay attacks are one of the most challenging threats RFID will have to face in the close future. They consist in making the verifier believe that the prover is in its close vicinity by surreptitiously forwarding the signal between the verifier and an out-of-field prover. Distance bounding protocols represent a promising way to thwart relay attacks, by measuring the round trip time of short authenticated messages. Several such protocols have been designed during the last years but none of them combine all the features one may expect in a RFID system.

We introduce in this paper the first solution that compounds in a single protocol all these desirable features. We prove, with respect to the previous protocols, that our proposal is the best one in terms of security, privacy, tag computational overhead, and fault tolerance. We also point out a weakness in Tu and Piramuthu’s protocol, which was considered up to now as one of the most efficient distance bounding protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  2. Brands, S., Chaum, D.: Distance-Bounding Protocols. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  3. Bussard, L., Bagga, W.: Distance-bounding proof of knowledge to avoid real-time attacks. In: IFIP/SEC (2005)

    Google Scholar 

  4. Capkun, S., Buttyan, L., Hubaux, J.-P.: SECTOR: secure tracking of node encounters in multi-hop wireless networks. In: 1st ACM Workshop on Security of Ad Hoc and Sensor Networks – SASN 2003, pp. 21–32 (2003)

    Google Scholar 

  5. Desmedt, Y.: Major security problems with the “Unforgeable” (Feige)-Fiat-Shamir proofs of identiy and how to overcome them. In: SecuriCom 1988, pp. 15–17 (1988)

    Google Scholar 

  6. Guttman, J.D., Thayer, F.J., Zuck, L.D.: The faithfulness of abstract protocol analysis: Message authentication. Journal of Computer Security 12(6), 865–891 (2004)

    Article  Google Scholar 

  7. Hancke, G., Kuhn, M.: An RFID distance bounding protocol. In: The 1st International Conference on Security and Privacy for Emergin Areas in Communications Networks (SECURECOMM 2005), pp. 67–73. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  8. Hofferek, G., Wolkerstorfer, J.: Coupon recalculation for the GPS authentication scheme. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 162–175. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Munilla, J., Peinado, A.: Distance bounding protocols with void-challenges for RFID. In: Workshop on RFID Security - RFIDSec 2006 (2006)

    Google Scholar 

  10. Munilla, J., Peinado, A.: Distance bounding protocols for RFID enhanced by using void-challenges and analysis in noisy channels. Wireless communications and mobile computing (2008); published online: January 17, 2008, an earlier version appears in [9]

    Google Scholar 

  11. Nikov, V., Vauclair, M.: Yet another secure distance-bounding protocol, http://eprint.iacr.org/2008/319 ; an earlier version appears in SECRYPT 2008

  12. Piramuthu, S.: Protocols for RFID tag/reader authentication. Decision Support Systems 43, 897–914 (2007)

    Article  Google Scholar 

  13. Reid, J., Nieto, J.G., Tang, T., Senadji, B.: Detecting relay attacks with timing-based protocols. In: Bao, F., Miller, S. (eds.) Proceedings of the 2nd ACM symposium on Information, computer and communications security, pp. 204–213. ACM, New York (2007), http://eprint.qut.edu.au/view/year/2006.html

    Google Scholar 

  14. Singelée, D., Preneel, B.: Distance bounding in noisy environments. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 101–115. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Tu, Y.-J., Piramuthu, S.: RFID distance bounding protocols. In: The 1st International EURASIP Workshop in RFID Technology, Vienna, Austria (2007)

    Google Scholar 

  16. Waters, B., Felten, E.: Secure, private proofs of location. Princeton Computer Science, TR-667-03 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, C.H., Avoine, G., Koeune, F., Standaert, FX., Pereira, O. (2009). The Swiss-Knife RFID Distance Bounding Protocol. In: Lee, P.J., Cheon, J.H. (eds) Information Security and Cryptology – ICISC 2008. ICISC 2008. Lecture Notes in Computer Science, vol 5461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00730-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00730-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00729-3

  • Online ISBN: 978-3-642-00730-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics